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Particle in a periodic potential.
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Particle in a periodic potential.

Phase space orbits.




Particle in a periodic potential.

for allowed energies,

and dJ(E)
J(En) — J(En_]_) = T AEn
En
where AE, = E, — E,_1.
Now use JJ(E)
g~ weF)
thus



Particle in a periodic potential.

Phase space orbits.
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Particle in a periodic potential.

Dynamics of a classical distribution Q(gq, p):
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solved by the method of characteristics*.

Qo(q, p) = QW\/;—UP &P {(p 2_al:0)2} P [%}

(g0, po) = (—1.5,0), 0q = 0.18, 0, = 0.33




Particle in a periodic potential.

Dynamics of a classical distribution Q(q, p): Plot contours of Q

(a) (b)

Figure: k = 1.2, (a) initially the atom is localized in the region of
bounded motion; (b) After just ten classical periods the distribution of
the atom is sheered over the trajectories on which it has support.



Particle in a periodic potential.

Classical dynamics of moments of momentum:
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Figure: (a) the mean momentum, (p), rapidly collapses to zero due to
the sheering action of the nonlinear motion;(b) the momentum variance,

V(p)



Particle in a periodic potential.

The time for collapse of the oscillation.

The inner and outer bounds of the distribution rotate at different

rates in phase space, resulting in a rotational sheering.

Consider two initial points separated by AE in energy. The
difference in the rotational rate is
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The collapse time is defined by dw Ty ~ 27
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Energy eigenstates of a periodic potential.

A periodic potential has a displacement symmetry:
V(g +d)=V(d)

Displacement is induced by a unitary operator §d

where

Prove this.

For V(§) = —kcos g, the unitary symmetry transformation is Son



Energy eigenstates of a periodic potential.
Symmetries have an effect on the energy eigenstates,
81 1%, =

Thus, if |E) is an energy eigenstate,

H|E) = E|E)
so is §2W|E>
Proof:
H5.E) = 5,81 FHS,|E)
= SH|E)
- E<§2W|E>)

We can choose eigenstates of A to be eigenstates of Son



Energy eigenstates of a periodic potential.

The eigenstates of S, are clearly momentum eigenstates with
eigenvalue e=27P/K

In the case of a pendulum, the potential has a similar periodicity.
However, the coordinate is an angle, 0 < 6 < 27.

The energy eigenstates must be periodic in 6, which implies that
we must restrict the momentum eigenvalues to p = mk.

But in this problem § is the position of a particle on the real line,
thus the momentump can take any value at all.

The topology of the classical phase space matters!



Energy eigenstates of a periodic potential.

Denote the simultaneous eigenstates of A and §27r as |Ep, p)
(where n is an integer and p is a real number).

H|Ena P> = En(p)|Ena P>

Notice that H is invariant if (q,p) — (—q,—p), a parity symmetry.

Let P be the parity operator,
Plp) =1—p)

This implies that the momentum operator transforms as
PpP = —p, and that the translation operator is reversed:
p

A,

S_or.

R

3
o
Il

This means that the states |E,, p) and |E,, —p) have the same
energy.



Energy eigenstates of a periodic potential.

The position probability amplitudes for energy eigenstates must

satisfy
K d?u,, d“upp

2 dg?

Mathieu's equation.

+ 2k5in%(q/2) tnp = En(p)tin,p -

Eigenstates differing in quasi-momentum by an amount k must
have the same energy and the same translation eigenvalue.

Hence the energy and the u, , functions repeat themselves in
quasi-momentum space. For uniqueness p is usually restricted to

the interval [k/2, —k/2), the first Brillouin zone.

up,p are called the Bloch functions.



Energy eigenstates of a periodic potential.

Bloch functions.

et fki/ziz Unp(q') unp(q)dp = 27kd(q" —q) (completeness
S lunp(@)? dq 1 (normalization
25 uw p(q) unp(q) dg = 2mkdy ,0(p' — p) (orthogonality



Energy eigenstates of a periodic potential.

Bloch functions are not localised. We define a class of localised
states Wannier states.

k/2

1

Waum) = —— [ exp(~2rimp/i) v, p) dp
V2rk J-k/2 ( )

The Wannier state |W,,, m) is localized at the point ¢ = 2rm and
it is easy to verify that it satisfies the translation identity,
527r|Wn7 m> = |Wn7 m + ]->

Express the Bloch states in terms of the Wannier states

(Enp) = V27 S exp(2mimp/k) Wy, m) .

m=—0o0



Energy eigenstates of a periodic potential.

Position probability amplitude for a Wannier state:
an,m(q) = <q| W, m>

ffooo ay m(q)*anm(q) dg = Op.nOpym (normalization),
>0 2me—oo @anm(@) anm(q) = 0(g—q') (completeness).



Energy eigenstates of a periodic potential.

The Bloch states are periodic, thus we can make a Fourier
expansion,

o0

unp(@) = Y Valp+mK)expi(p+mk)q/K] .

m=—0o0



Energy eigenstates of a periodic potential.

A useful property of the Wannier states: Using the definition of
|W,,, m) in terms of Bloch states,

k/2
1 o
a,,7m(q) = ﬁ / k/2 e 2 /mp/kun’p(q)

Now we can prove that

vn(p) = %Q_F / Z an0(q) exp (—ipq/K) da

Thus, given the Wannier state a, o(q) we can find the v,(p) and
thus all the Bloch states.



Energy eigenstates of a periodic potential.

Husimi function for a Wannier state

Q(q7 p) = ‘(CM‘ W77 0>|2
where o = q + ip (choose k = 0.24)




Energy eigenstates of a periodic potential.
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we can write, B
En(p) = E, + kA, cos(2mp/ k)



Energy eigenstates of a periodic potential.

We can write,
En(p) = E, + kA, cos(2np/ k)

where E,, is the average energy of the nth band and A, is the band
width.

The average energy of the nth band satisifes,

JE)=k(n+1).



Fractional revivals.

Recall, Wannier state |W,,, m) is centred in the well at 2rm, and is
localised on an annulus determined by n.

Thus an initial state localised in the well near ¢ = 0 can be written
as

|¢(0)> = Z an| Wn>0> .
will evolve to

[9(t)) = anexp (—iEnt/k) [Wp,0) .

Assume the energy varies slowly with n,

2

— - k 8 Ci
Ey ~ En + koa(En)(n — 7) + = (n — A)? e

OE |~

n

The linear term in n is like the SHO, it would make the dynamics
perfectly periodic. What does the n? term do?



Fractional revivals.

Some details

J(E,) =k(n+1/2)

E, = J Y (k(n+1/2))

J Yk + 1/2)) + k(n — ﬁ)diE JYE), + g(n Ay

Q
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Fractional revivals.

Thus
|w(t)> — e—iEﬁt Z ane—iwt(n—ﬁ)—ixt(n—ﬁ)2|Wm’ 0>
where
_E dw
X772 TdE |,

ignore phase pre-factor. Shift sum index

|¢(t)> — Z 3m+ﬁe_iwtm_ixtm2|Wm, 0>



Fractional revivals.
An analogy: anharmonic oscillator

H = hwa'a + hy(a'a)?
Eigenstates are |n) with eigenvalues, E, = hwn + hxn?.

Take initial coherent state

o —\a|2/2 Oén
=€ E —\Nn

Evolves to

/wt

‘w( —|a? /ZZ —Ith2|n>



Fractional revivals.
Move to a rotating frame in complex plane
o= ﬁeiwt

in this frame,
y — o812 B —ixer
t) =e E e n
[(t)) 2 o |n)

e clearly periodic xt = 27
o if xt =, stateis | — (3)... a revival.
o if xt =m/2 state is

e M4B) + &/ — )

a fractional revival.



Fractional revivals.

Now return to periodic potential and plot the Husimi function for
an initial Gaussian state,

Qo t) = [{ale(t)?

a=q+ip



Fractional revivals.




Particle in a periodic potential.

Quantum dynamics of moments of momentum:

V(p)




