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Particle in a periodic potential.

V (x) = −V0 cos(2πx/λ)

H =
p2
x

2m
− V0 cos(2πx/λ)

-2 -1 1 2

-1

-0.5

0.5

1

x

V(x)



Particle in a periodic potential.

Phase space orbits.
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Particle in a periodic potential.

for allowed energies,

J(En) − J(En−1) = k

and

J(En) − J(En−1) =≈ dJ(E )

dE

∣

∣

∣

∣

En

.∆En

where ∆En = En − En−1.

Now use
dJ(E )

dE
= ωcl (E )

thus
∆En = kωcl(E )



Particle in a periodic potential.

Phase space orbits.
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Particle in a periodic potential.

Dynamics of a classical distribution Q(q, p):

∂Q

∂t
= −{H,Q}q,p = −p

∂Q

∂q
+ κ sin q

∂Q

∂p
,

solved by the method of characteristics∗.

Q0(q, p) =
1

2π
√
σqσp

exp

[

(p − p0)
2

2σp

]

exp

[

(q − q0)
2

2σq

]

(q0, p0) = (−1.5, 0), σq = 0.18, σp = 0.33



Particle in a periodic potential.

Dynamics of a classical distribution Q(q, p): Plot contours of Q

Figure: κ = 1.2, (a) initially the atom is localized in the region of
bounded motion; (b) After just ten classical periods the distribution of
the atom is sheered over the trajectories on which it has support.



Particle in a periodic potential.

Classical dynamics of moments of momentum:
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Figure: (a) the mean momentum, 〈p〉, rapidly collapses to zero due to
the sheering action of the nonlinear motion;(b) the momentum variance,
V (p)



Particle in a periodic potential.

The time for collapse of the oscillation.

The inner and outer bounds of the distribution rotate at different
rates in phase space, resulting in a rotational sheering.

Consider two initial points separated by ∆E in energy. The
difference in the rotational rate is

δω = ωcl(E + ∆E ) − ωcl(E )

=
dωcl(E )

dE
.∆E =

dωcl(E )

dE
.
dE

dJ
∆J

=
dωcl(E )

dE
.ωcl∆J

The collapse time is defined by δωTcol ∼ 2π

Tcol =
2π

ωcl

(

∆J
dωcl(E )

dE

)−1

= Tcl

(

∆J
dωcl(E )

dE
.

)−1



Energy eigenstates of a periodic potential.

A periodic potential has a displacement symmetry:

V (q̂ + d) = V (q̂)

Displacement is induced by a unitary operator Ŝd

Ŝ
†
d
q̂Ŝd = q̂ + d

where
Ŝd = e−idp̂/k

Prove this.

For V (q̂) = −κ cos q̂, the unitary symmetry transformation is Ŝ2π



Energy eigenstates of a periodic potential.

Symmetries have an effect on the energy eigenstates,

Ŝ
†
2πĤŜ2π = Ĥ

Thus, if |E 〉 is an energy eigenstate,

Ĥ |E 〉 = E |E 〉

so is Ŝ2π|E 〉

Proof:

ĤŜ2π|E 〉 = Ŝ2πŜ
†
2πĤŜ2π|E 〉

= Ŝ2πĤ |E 〉
= E

(

Ŝ2π|E 〉
)

We can choose eigenstates of Ĥ to be eigenstates of Ŝ2π



Energy eigenstates of a periodic potential.

The eigenstates of Ŝ2π are clearly momentum eigenstates with
eigenvalue e−i2πp/k.

In the case of a pendulum, the potential has a similar periodicity.
However, the coordinate is an angle, 0 ≤ θ < 2π.

The energy eigenstates must be periodic in θ, which implies that
we must restrict the momentum eigenvalues to p = mk.

But in this problem q̂ is the position of a particle on the real line,
thus the momentump can take any value at all.

The topology of the classical phase space matters!



Energy eigenstates of a periodic potential.

Denote the simultaneous eigenstates of Ĥ and Ŝ2π as |En, p〉
(where n is an integer and p is a real number).

Ĥ |En, p〉 = En(p)|En, p〉

Notice that Ĥ is invariant if (q, p) → (−q,−p), a parity symmetry.

Let P̂ be the parity operator,

P̂|p〉 = | − p〉

This implies that the momentum operator transforms as
P̂ p̂P̂ = −p̂, and that the translation operator is reversed:
P̂Ŝ2πP̂ = Ŝ−2π.

This means that the states |En, p〉 and |En,−p〉 have the same
energy.



Energy eigenstates of a periodic potential.

The position probability amplitudes for energy eigenstates must
satisfy

−k2

2

d2un,p

dq2
+ 2κ sin2(q/2)un,p = En(p)un,p .

Mathieu’s equation.

Eigenstates differing in quasi-momentum by an amount k must
have the same energy and the same translation eigenvalue.

Hence the energy and the un,p functions repeat themselves in
quasi-momentum space. For uniqueness p is usually restricted to
the interval [k/2,−k/2), the first Brillouin zone.

un,p are called the Bloch functions.



Energy eigenstates of a periodic potential.

Bloch functions.

∑∞
n=1

∫ k/2
−k/2

un,p(q
′)∗un,p(q) dp = 2πk δ(q′ − q) (completeness)

∫ π
−π |un,p(q)|2 dq = 1 (normalization)

∫ ∞
−∞ un′,p′(q)∗un,p(q) dq = 2πk δn′,nδ(p

′ − p) (orthogonality)



Energy eigenstates of a periodic potential.

Bloch functions are not localised. We define a class of localised
states Wannier states.

|Wn,m〉 =
1√
2πk

∫ k/2

−k/2
exp (−2πimp/k) |En, p〉 dp .

The Wannier state |Wn,m〉 is localized at the point q = 2πm and
it is easy to verify that it satisfies the translation identity,
Ŝ2π|Wn,m〉 = |Wn,m + 1〉.

Express the Bloch states in terms of the Wannier states

|En, p〉 =
√

2π

∞
∑

m=−∞

exp (2πimp/k) |Wn,m〉 .



Energy eigenstates of a periodic potential.

Position probability amplitude for a Wannier state:

an,m(q) = 〈q|Wn,m〉
∫ ∞
−∞ an′,m′(q)∗an,m(q) dq = δn′,n δm′,m (normalization) ,

∑∞
n=0

∑∞
m=−∞ an,m(q′)∗an,m(q) = δ(q − q′) (completeness).



Energy eigenstates of a periodic potential.

The Bloch states are periodic, thus we can make a Fourier
expansion,

un,p(q) =

∞
∑

m=−∞

vn(p + mk) exp [i (p + mk) q/k] .



Energy eigenstates of a periodic potential.

A useful property of the Wannier states: Using the definition of
|Wn,m〉 in terms of Bloch states,

an,m(q) =
1

2πk

∫ k/2

−k/2
e−2πimp/kun,p(q)

Now we can prove that

vn(p) =
1√
2π

∫ ∞

−∞
an,0(q) exp (−ipq/k) dq

Thus, given the Wannier state an,0(q) we can find the vn(p) and
thus all the Bloch states.



Energy eigenstates of a periodic potential.

Husimi function for a Wannier state

Q(q, p) = |〈α|W7, 0〉|2

where α = q + ip (choose k = 0.24)



Energy eigenstates of a periodic potential.

κ = 1.2
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we can write,
En(p) = Ēn + k∆n cos(2πp/k)



Energy eigenstates of a periodic potential.

We can write,

En(p) = Ēn + k∆n cos(2πp/k)

where Ēn is the average energy of the nth band and ∆n is the band

width.

The average energy of the nth band satisifes,

J(Ēn) = k
(

n + 1
2

)

.



Fractional revivals.

Recall, Wannier state |Wn,m〉 is centred in the well at 2πm, and is
localised on an annulus determined by n.

Thus an initial state localised in the well near q = 0 can be written
as

|ψ(0)〉 =
∑

n

an|Wn, 0〉 .

will evolve to

|ψ(t)〉 =
∑

n

an exp
(

−i Ēnt/k
)

|Wn, 0〉 .

Assume the energy varies slowly with n,

Ēn ≈ Ēn̄ + kωcl (Ēn̄)(n − n̄) +
k2

2
(n − n̄)2

∂ωcl

∂E

∣

∣

∣

∣

n̄

.

The linear term in n is like the SHO, it would make the dynamics
perfectly periodic. What does the n2 term do?



Fractional revivals.

Some details
J(Ēn) = k(n + 1/2)

Ēn = J−1 (k(n + 1/2))

≈ J−1(k(n̄ + 1/2)) + k(n − n̄)
d

dE
J−1(E )

∣

∣

n̄
+

k2

2
(n − n̄)2

d2

dE 2
J−1(E )

∣

∣

n̄

but
d

dE

(

J−1(E )
)

=
dE

dJ
= ωcl(E )



Fractional revivals.

Thus

|ψ(t)〉 = e−i Ēn̄t
∑

n

ane
−iωt(n−n̄)−iχt(n−n̄)2 |Wm, 0〉

where

χ =
k

2

dωcl

dE

∣

∣

∣

∣

n̄

ignore phase pre-factor. Shift sum index

|ψ(t)〉 =
∑

m

am+n̄e
−iωtm−iχtm2 |Wm, 0〉



Fractional revivals.

An analogy: anharmonic oscillator

H = ~ωa†a + ~χ(a†a)2

Eigenstates are |n〉 with eigenvalues, En = ~ωn + ~χn2.

Take initial coherent state

|α〉 = e−|α|2/2
∞
∑

n=0

αn

√
n!
|n〉

Evolves to

|ψ(t)〉 = e−|α|2/2
∞
∑

n=0

(

αe−iωt
)n

√
n!

e−iχtn2 |n〉



Fractional revivals.

Move to a rotating frame in complex plane

α = βe iωt

in this frame,

|ψ̃(t)〉 = e−|β|2/2
∞

∑

n=0

βn

√
n!

e−iχtn2 |n〉

• clearly periodic χt = 2π

• if χt = π, state is | − β〉... a revival.

• if χt = π/2 state is

e−iπ/4|β〉 + e iπ/4| − β〉

a fractional revival.



Fractional revivals.

Now return to periodic potential and plot the Husimi function for
an initial Gaussian state,

Q(α, t) = |〈α|ψ(t)〉|2

α = q + ip



Fractional revivals.

k = 0.24,
(a) t = 13; (b) t = 26; (c) t = 39; (d) t = 52.



Particle in a periodic potential.

Quantum dynamics of moments of momentum:
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