MATH4104: Quantum nonlinear dynamics. Lecture Eight. Quantum dynamics in a periodic driven systems

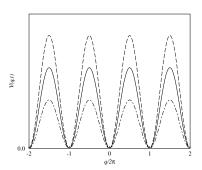
G J Milburn

The University of Queensland

S2, 2009

Include a modulation of the potential depth.

$$H(t) = \frac{p^2}{2} - \kappa (1 - 2\epsilon \cos t) \cos(q)$$



Stroboscopic (Floquet) dynamics.

$$H(t+2\pi)=H(t)$$

Only determine (q(t), p(t)) at integer multiples of the driving period, 2π .

Stroboscopic (Floquet) dynamics.

$$H(t+2\pi)=H(t)$$

Only determine (q(t), p(t)) at integer multiples of the driving period, 2π .

The classical stroboscopic dynamics of the variables q and p are determined by the recursive formula, Floquet map

$$(q',p') = F((q,p)) = (\bar{q}(q,p,2\pi),\bar{p}(q,p,2\pi)),$$

where $\bar{q}(q, p, t)$ and $\bar{p}(q, p, t)$ are determined by Hamilton's equations and the initial conditions $\bar{q}(q, p, 0) = q$ and $\bar{p}(q, p, 0) = p$.

Simple example: periodically driven SHO.

$$H = \frac{p_x^2}{2m} + \frac{m\omega^2}{2}x^2 + f_0x\cos\Omega t$$

Hamilton's equations

$$\dot{x} = p/m$$

$$\dot{p_x} = -m\omega^2 x - f_0 \cos \Omega t$$

Thus

$$\ddot{x} = -\omega^2 x - (f_0/m)\cos\Omega t$$

Solution:

$$x(t) = x(0)\cos\omega t + \frac{p_0}{m\omega}\sin\omega t - \frac{f_0}{m\omega} \text{Imag}\left[\int_0^t dt' e^{-i\omega(t-t')}\cos\Omega t'\right]$$

Quantum driven SHO

$$H = \hbar \omega a^{\dagger} a + \epsilon_0 (a + a^{\dagger}) \cos(\Omega t)$$
 $\epsilon_0 = f_0 \sqrt{\Delta}$

with $\Delta = \hbar/(2m\omega)$ Equations of motion

$$\frac{da}{dt} = -i\omega a - i\epsilon_0 \cos(\Omega t)$$

Rotating frame (interaction picture)

$$\tilde{a}(t) = a(t)e^{i\Omega t}$$

$$\frac{d\tilde{a}}{dt} = -i\delta\tilde{a} - i\epsilon_0 \frac{\left(e^{i\Omega t} + e^{-i\Omega t}\right)}{2} e^{i\Omega t}$$
$$\approx -i\delta\tilde{a} - i\epsilon_0/2$$

for times $\Omega t >> 1$, the rotating wave approximation, and $\delta = \omega - \Omega$.

Solution

$$\tilde{a}(t) = a(0)e^{-i\delta t} - \frac{\epsilon_0}{2\delta}(1 - e^{-i\delta t})$$

Floquet map $t = nT = 2\pi n/\Omega$

$$\tilde{a}(nT) = a(nT)$$

Thus

$$a(nT) = a((n-1)T)e^{-i\delta T} - \frac{\epsilon_0}{2\delta}(1 - e^{-i\delta T})$$

for resonance $\delta = 0$

$$a(nT) = a((n-1)T) - i\frac{\epsilon_0 t}{2}$$

Just a displacement in the phase plane

Dispalcement operator

$$D(\alpha) = e^{\alpha a^{\dagger} + \alpha^* a}$$

 $D^{\dagger}(\alpha) a D(\alpha) = a + \alpha$

(prove this)

So Floquet map on states is

$$|\psi_{n+1}\rangle = D(\alpha)|\psi_n\rangle$$

 $\alpha = -i\epsilon_0 t/2$

Include a modulation of the potential depth.

$$H(t) = \frac{p^2}{2} - \kappa (1 - 2\epsilon \cos t) \cos(q)$$

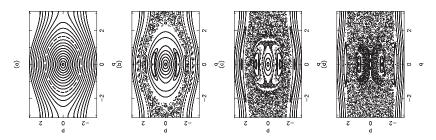


Figure: Plot of classical stroboscopic phase space portraits. (a) $\epsilon = 0.0$, (b) $\epsilon = 0.1$, (c) $\epsilon = 0.2$, (d) $\epsilon = 0.3$.

Floquet eigenstates.

$$|\psi\rangle_n = \hat{F}|\psi\rangle_{n-1}$$

Assume we can find the eigenstates of \hat{F} (not easy!).

$$\hat{F}|\phi_{
u}\rangle = e^{-i\phi_{
u}}|\phi_{
u}\rangle$$

as \hat{F} is unitary, the eigenvalues lie on the unit circle in the complex plane.

The expand the initial state in this basis

$$|\psi\rangle_0 = \sum_{\nu} c_{\nu} |\phi_{\nu}\rangle$$

$$|\psi\rangle_n = \hat{F}^n \sum_{\nu} c_{\nu} |\phi_{\nu}\rangle = \sum_{\nu} c_{\nu} e^{-in\phi_{\nu}} |\phi_{\nu}\rangle$$

The Floquet operator is invariant under translations by 2π .

The Floquet operator is invariant under translations by 2π .

eigenstates $|e_n, p\rangle$ are labeled by a band number n and a quasi-momentum variable $p \in [-k/2, k/2)$.

The Floquet operator is invariant under translations by 2π .

eigenstates $|e_n, p\rangle$ are labeled by a band number n and a quasi-momentum variable $p \in [-k/2, k/2)$.

$$\begin{split} \hat{F}|e_n,p\rangle &= \exp\left(-2\pi i\,e_n(p)/\hbar\right)|e_n,p\rangle\;,\\ \hat{S}_{2\pi}|e_n,p\rangle &= \exp\left(2\pi i\,p/\hbar\right)|e_n,p\rangle\;. \end{split}$$

The Floquet operator is invariant under translations by 2π .

eigenstates $|e_n, p\rangle$ are labeled by a band number n and a quasi-momentum variable $p \in [-k/2, k/2)$.

$$\hat{F}|e_n, p\rangle = \exp\left(-2\pi i e_n(p)/\hbar\right)|e_n, p\rangle ,$$

 $\hat{S}_{2\pi}|e_n, p\rangle = \exp\left(2\pi i p/\hbar\right)|e_n, p\rangle .$

 $e_n(p)$ is called the quasi-energy only defined moduluo k.

Given arbitrary initial state, $|\psi\rangle$,

$$\hat{F}^{s}|\psi\rangle = \sum_{n} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \exp\left(-2\pi i s \, e_{n}(p)/\pi\right) |e_{n},p\rangle\langle e_{n},p|\psi\rangle \, dp \; ,$$

after s cycles of the driving term.

Prove that
$$e_n(-p) = e_n(p)$$
.

Use symmetry properties to numerically diagonalise the Floquet operator.

Use symmetry properties to numerically diagonalise the Floquet operator.

The quasi-momenta p=-k/2 and p=0 are special because the corresponding quasi-stationary states are eigenstates of both $\hat{S}_{2\pi}$ and \hat{P} (parity).

Use symmetry properties to numerically diagonalise the Floquet operator.

The quasi-momenta p=-k/2 and p=0 are special because the corresponding quasi-stationary states are eigenstates of both $\hat{S}_{2\pi}$ and \hat{P} (parity).

For $p \in (-k/2, 0)$ the new quasi-stationary states

$$|e_n,p\rangle_{\pm}=rac{1}{\sqrt{2}}(|e_n,p\rangle\pm|e_n,-p\rangle) \ ,$$

are even (+) and odd (-) parity under \hat{P} .

Expanding $|e_n, p\rangle_{\pm}$ in terms of momentum eigenstates,

$$|e_n,p\rangle_{\pm} = \sum_{m=-\infty}^{\infty} \frac{a_m}{\sqrt{2}} \left(|-p+m\rlap/k\rangle \pm |p-m\rlap/k\rangle \right) \; , \label{eq:enphi}$$

it follows from the anti-linearity of time reversal,

$$\hat{F}\,\hat{T}|e_n,p\rangle_{\pm}=\exp(-2\pi i e_n(p)/\hbar)\,\hat{T}|e_n,p\rangle_{\pm}$$
 .

Thus $|e_n, p\rangle_{\pm}$ and $\hat{T}|e_n, p\rangle_{\pm}$ are degenerate.

Form a new basis of quasistationary states by symmetric and anti-symmetric combinations of degenerate pairs.

Form a new basis of quasistationary states by symmetric and anti-symmetric combinations of degenerate pairs.

In that case the parity condition implies $a_m = \pm a_m^*$, so that the expansion of the new quasistationary states in the momentum basis may be chosen real.

Form a new basis of quasistationary states by symmetric and anti-symmetric combinations of degenerate pairs.

In that case the parity condition implies $a_m = \pm a_m^*$, so that the expansion of the new quasistationary states in the momentum basis may be chosen real.

Similarly, this results also holds for the quasi-momenta p=-k and p=0.

Form a new basis of quasistationary states by symmetric and anti-symmetric combinations of degenerate pairs.

In that case the parity condition implies $a_m = \pm a_m^*$, so that the expansion of the new quasistationary states in the momentum basis may be chosen real.

Similarly, this results also holds for the quasi-momenta p=-k and p=0.

The operator \hat{F} may be numerically diagonalized for the quasi-momentum p=0. Using the parity and time-reversal symmetries, reduce the problem of diagonalizing a complex unitary operator to an equivalent problem of diagonalizing a real symmetric operator. Then use Householder's method and the QL algorithm to ensure that the numerical quasi-stationary states are real in the momentum basis and strictly orthogonal.

Husimi function for Floquet eigenstates with quasi-momentum p=0, and $\hbar=0.05$.

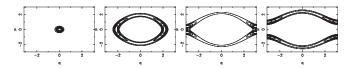


Figure: Some Q functions of Floquet operator when $\epsilon=0.0$. (a) the ground state, (b) a libration state, (c) a separatrix state, (d) a rotation state.

Husimi function for Floquet eigenstates with quasi-momentum p=0, and k=0.05 .

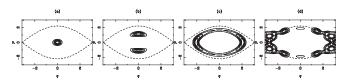


Figure: Some Q functions of Floquet operator eigenstates when $\epsilon=0.1$.

Husimi function for Floquet eigenstates with quasi-momentum p=0, and k=0.05 .

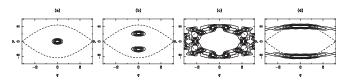


Figure: Some Q functions of Floquet operator eigenstates when $\epsilon=0.2$.

Husimi function for Floquet eigenstates with quasi-momentum p=0, and k=0.05 .

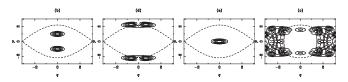


Figure: Some Q functions of Floquet operator eigenstates when $\epsilon=0.3$.