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Particle in a periodic potential.

Include a modulation of the potential depth.

2
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Only determine (qg(t), p(t)) at integer multiples of the driving
period, 27.



Particle in a periodic potential.

Stroboscopic (Floquet) dynamics.
H(t +2m) = H(t)

Only determine (qg(t), p(t)) at integer multiples of the driving
period, 27.

The classical stroboscopic dynamics of the variables g and p are
determined by the recursive formula, Floquet map

(d',p") = F((g,p)) = (a(q, p,27), p(q, p, 27)) ,

where g(q, p, t) and p(q, p, t) are determined by Hamilton's
equations and the initial conditions g(g, p,0) = g and

p(q,p,0) = p.



Driven SHO.

Simple example: periodically driven SHO.

2
H= pX M ey fox cos Qt
2m 2

Hamilton's equations

x = p/m

Px = —mw?x — fycos Qt
Thus

X = —w?x — (fy/m) cos Qt
Solution:

f e
x(t) = x(0) cos (JJH—ﬂ sin wt——olmag [/ dt' e (=) cos Qt/
mw mw 0



Driven SHO.

Quantum driven SHO
H = hwa'a+ eg(a+ a') cos(Qt)

€0 = VA
with A = 1/(2mw)

Equations of motion

d
d_‘: = —iwa — ieg cos(2t)



Driven SHO.

Rotating frame (interaction picture)

3(t) = a(t)e™H

dé (eiQt + e—iQt) .
a3 _isz_ iQt
dt 1oa 1€Q > e

~ —id3—ieg/2

for times Qt >> 1, the rotating wave approximation, and
0 =w-— .



Driven SHO.

Solution

a(t) = a(O)e"‘” _ 2_(()5(1 _ e—iat)

Floquet map t = nT = 2mwn/Q
3a(nT)=a(nT)

Thus

a(nT)=a((n—1)T)e T — %(1 _ e 0T

for resonance 6 =0

a(nT)=a((n—1)T) — /%t

Just a displacement in the phase plane



Driven SHO.

Dispalcement operator

(prove this)

So Floquet map on states is

[¥nt1) = D(a)[n)

a = —iet/2



Particle in a periodic potential.

Include a modulation of the potential depth.

H(t) = %2 — K(1 — 2ecos t) cos(q)

Figure: Plot of classical stroboscopic phase space portraits. (a) e = 0.0,
(b)e=0.1, (c) e=0.2,(d) e=0.3.



Particle in a periodic potential.

Floquet eigenstates.
|¢>n = F|¢>n—1

Assume we can find the eigenstates of F (not easy!).

i:_|¢u> = e_i¢u|¢u>

as Fis unitary, the eigenvalues lie on the unit circle in the complex
plane.

The expand the initial state in this basis

[¥)o = Z cvl|bw)

‘w>n = l:_nz CV‘¢V> = Zcue_in¢u‘¢u>

v



Particle in a periodic potential.

The Floquet operator is invariant under translations by 2.
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Particle in a periodic potential.

The Floquet operator is invariant under translations by 2.

eigenstates |e,, p) are labeled by a band number n and a
quasi-momentum variable p € [—k/2, k/2).

Flen, p) = exp (—2mi es(p)/k) |€n, p) ,
Sorlen, p) = exp (27Ti p/k) len, p) -

en(p) is called the quasi-energy only defined moduluo k.



Particle in a periodic potential.

Given arbitrary initial state, |¢),

R k/2
Bl =3 / 12 (2715 alp)/R)en, ) o pIV) 0

after s cycles of the driving term.

Prove that e,(—p) = e (p).



Particle in a periodic potential.

Use symmetry properties to numerically diagonalise the Floquet
operator.
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Use symmetry properties to numerically diagonalise the Floquet
operator.

The quasi-momenta p = —k/2 and p = 0 are special because the
corresponding quasi-stationary states are eigenstates of both S,
and P (parity).



Particle in a periodic potential.

Use symmetry properties to numerically diagonalise the Floquet
operator.

The quasi-momenta p = —k/2 and p = 0 are special because the
corresponding quasi-stationary states are eigenstates of both S,

and P (parity).

e R J— e R :l: e , — D ,
n p + \/E n p n

are even (4) and odd (—) parity under P.



Particle in a periodic potential.

Expanding |e,, p)+ in terms of momentum eigenstates,

o0

enp)e= > %(|—p+mk>i|p—mk>) ,

m=—0o0

it follows from the anti-linearity of time reversal,

FTlen p)s = exp(—2mie,(p)/k) T|en, p) -

Thus e, p)+ and T|e,, p)+ are degenerate.



Particle in a periodic potential.

Form a new basis of quasistationary states by symmetric and
anti-symmetric combinations of degenerate pairs.
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expansion of the new quasistationary states in the momentum
basis may be chosen real.
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Particle in a periodic potential.

Form a new basis of quasistationary states by symmetric and
anti-symmetric combinations of degenerate pairs.

In that case the parity condition implies a,, = *£ay,, so that the
expansion of the new quasistationary states in the momentum
basis may be chosen real.

Similarly, this results also holds for the quasi-momenta p = —k and
p=0.

The operator F may be numerically diagonalized for the quasi-momentum p = 0. Using the parity and
time-reversal symmetries, reduce the problem of diagonalizing a complex unitary operator to an equivalent problem
of diagonalizing a real symmetric operator. Then use Householder's method and the QL algorthm to ensure that

the numerical quasi-stationary states are real in the momentum basis and strictly orthogonal.



Particle in a periodic potential.

Husimi function for Floquet eigenstates with quasi-momentum
p=20, and k= 0.05.

Figure: Some Q functions of Floquet operator when € = 0.0. (a) the
ground state, (b) a libration state, (c) a separatrix state, (d) a rotation
state.



Particle in a periodic potential.

Husimi function for Floquet eigenstates with quasi-momentum
p=0, and k= 0.05.

Figure: Some @ functions of Floquet operator eigenstates when ¢ = 0.1.



Particle in a periodic potential.

Husimi function for Floquet eigenstates with quasi-momentum
p=0, and k= 0.05.

Figure: Some @ functions of Floquet operator eigenstates when ¢ = 0.2.



Particle in a periodic potential.

Husimi function for Floquet eigenstates with quasi-momentum
p=0, and k= 0.05.

(v} (@) (@) @

Figure: Some @ functions of Floquet operator eigenstates when ¢ = 0.3.



