
MATH4104: Quantum nonlinear dynamics.

Lecture Eight.

Quantum dynamics in a periodic driven systems

G J Milburn

The University of Queensland

S2, 2009



Particle in a periodic potential.

Include a modulation of the potential depth.

H(t) =
p2

2
− κ(1 − 2ǫ cos t) cos(q)
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Particle in a periodic potential.

Stroboscopic (Floquet) dynamics.

H(t + 2π) = H(t)

Only determine (q(t), p(t)) at integer multiples of the driving
period, 2π.



Particle in a periodic potential.

Stroboscopic (Floquet) dynamics.

H(t + 2π) = H(t)

Only determine (q(t), p(t)) at integer multiples of the driving
period, 2π.

The classical stroboscopic dynamics of the variables q and p are
determined by the recursive formula, Floquet map

(q′, p′) = F ((q, p)) = (q̄(q, p, 2π), p̄(q, p, 2π)) ,

where q̄(q, p, t) and p̄(q, p, t) are determined by Hamilton’s
equations and the initial conditions q̄(q, p, 0) = q and
p̄(q, p, 0) = p.



Driven SHO.

Simple example: periodically driven SHO.

H =
p2
x

2m
+

mω2

2
x2 + f0x cos Ωt

Hamilton’s equations

ẋ = p/m

ṗx = −mω2x − f0 cos Ωt

Thus
ẍ = −ω2x − (f0/m) cos Ωt

Solution:

x(t) = x(0) cos ωt+
p0

mω
sinωt− f0

mω
Imag

[
∫ t

0
dt ′e−iω(t−t′) cos Ωt ′

]



Driven SHO.

Quantum driven SHO

H = ~ωa†a + ǫ0(a + a†) cos(Ωt)

ǫ0 = f0
√

∆

with ∆ = ~/(2mω)
Equations of motion

da

dt
= −iωa − iǫ0 cos(Ωt)



Driven SHO.

Rotating frame (interaction picture)

ã(t) = a(t)e iΩt

dã

dt
= −iδã − iǫ0

(

e iΩt + e−iΩt
)

2
e iΩt

≈ −iδã − iǫ0/2

for times Ωt >> 1, the rotating wave approximation, and
δ = ω − Ω.



Driven SHO.

Solution
ã(t) = a(0)e−iδt − ǫ0

2δ
(1 − e−iδt)

Floquet map t = nT = 2πn/Ω

ã(nT ) = a(nT )

Thus
a(nT ) = a((n − 1)T )e−iδT − ǫ0

2δ
(1 − e−iδT )

for resonance δ = 0

a(nT ) = a((n − 1)T ) − i
ǫ0t

2

Just a displacement in the phase plane



Driven SHO.

Dispalcement operator

D(α) = eαa†+α∗a

D†(α)aD(α) = a + α

(prove this)

So Floquet map on states is

|ψn+1〉 = D(α)|ψn〉
α = −iǫ0t/2



Particle in a periodic potential.

Include a modulation of the potential depth.

H(t) =
p2

2
− κ(1 − 2ǫ cos t) cos(q)

Figure: Plot of classical stroboscopic phase space portraits. (a) ǫ = 0.0,
(b)ǫ = 0.1, (c) ǫ = 0.2, (d) ǫ = 0.3 .



Particle in a periodic potential.

Floquet eigenstates.
|ψ〉n = F̂ |ψ〉n−1

Assume we can find the eigenstates of F̂ (not easy!).

F̂ |φν〉 = e−iφν |φν〉
as F̂ is unitary, the eigenvalues lie on the unit circle in the complex
plane.

The expand the initial state in this basis

|ψ〉0 =
∑

ν

cν |φν〉

|ψ〉n = F̂ n
∑

ν

cν |φν〉 =
∑

ν

cνe−inφν |φν〉



Particle in a periodic potential.

The Floquet operator is invariant under translations by 2π.



Particle in a periodic potential.

The Floquet operator is invariant under translations by 2π.

eigenstates |en, p〉 are labeled by a band number n and a
quasi-momentum variable p ∈ [−k/2, k/2).
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Ŝ2π|en, p〉 = exp (2πi p/k) |en, p〉 .



Particle in a periodic potential.

The Floquet operator is invariant under translations by 2π.

eigenstates |en, p〉 are labeled by a band number n and a
quasi-momentum variable p ∈ [−k/2, k/2).

F̂ |en, p〉 = exp (−2πi en(p)/k) |en, p〉 ,
Ŝ2π|en, p〉 = exp (2πi p/k) |en, p〉 .

en(p) is called the quasi-energy only defined moduluo k .



Particle in a periodic potential.

Given arbitrary initial state, |ψ〉,

F̂ s |ψ〉 =
∑

n

∫ k/2

−k/2
exp (−2πis en(p)/k) |en, p〉〈en, p|ψ〉 dp ,

after s cycles of the driving term.

Prove that en(−p) = en(p).



Particle in a periodic potential.

Use symmetry properties to numerically diagonalise the Floquet
operator.



Particle in a periodic potential.

Use symmetry properties to numerically diagonalise the Floquet
operator.

The quasi-momenta p = −k/2 and p = 0 are special because the
corresponding quasi-stationary states are eigenstates of both Ŝ2π

and P̂ (parity).



Particle in a periodic potential.

Use symmetry properties to numerically diagonalise the Floquet
operator.

The quasi-momenta p = −k/2 and p = 0 are special because the
corresponding quasi-stationary states are eigenstates of both Ŝ2π

and P̂ (parity).

For p ∈ (−k/2, 0) the new quasi-stationary states

|en, p〉± =
1√
2

(|en, p〉 ± |en,−p〉) ,

are even (+) and odd (−) parity under P̂.



Particle in a periodic potential.

Expanding |en, p〉± in terms of momentum eigenstates,

|en, p〉± =

∞
∑

m=−∞

am√
2

(| − p + mk〉 ± |p − mk〉) ,

it follows from the anti-linearity of time reversal,

F̂ T̂ |en, p〉± = exp(−2πien(p)/k)T̂ |en, p〉± .

Thus |en, p〉± and T̂ |en, p〉± are degenerate.
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Form a new basis of quasistationary states by symmetric and
anti-symmetric combinations of degenerate pairs.
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expansion of the new quasistationary states in the momentum
basis may be chosen real.
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p = 0.



Particle in a periodic potential.

Form a new basis of quasistationary states by symmetric and
anti-symmetric combinations of degenerate pairs.

In that case the parity condition implies am = ±a∗m, so that the
expansion of the new quasistationary states in the momentum
basis may be chosen real.

Similarly, this results also holds for the quasi-momenta p = −k and
p = 0.

The operator F̂ may be numerically diagonalized for the quasi-momentum p = 0. Using the parity and

time-reversal symmetries, reduce the problem of diagonalizing a complex unitary operator to an equivalent problem

of diagonalizing a real symmetric operator. Then use Householder’s method and the QL algorthm to ensure that

the numerical quasi-stationary states are real in the momentum basis and strictly orthogonal.



Particle in a periodic potential.

Husimi function for Floquet eigenstates with quasi-momentum
p = 0, and k = 0.05 .

Figure: Some Q functions of Floquet operator when ǫ = 0.0 . (a) the
ground state, (b) a libration state, (c) a separatrix state, (d) a rotation
state.



Particle in a periodic potential.

Husimi function for Floquet eigenstates with quasi-momentum
p = 0, and k = 0.05 .

Figure: Some Q functions of Floquet operator eigenstates when ǫ = 0.1 .



Particle in a periodic potential.

Husimi function for Floquet eigenstates with quasi-momentum
p = 0, and k = 0.05 .

Figure: Some Q functions of Floquet operator eigenstates when ǫ = 0.2 .



Particle in a periodic potential.

Husimi function for Floquet eigenstates with quasi-momentum
p = 0, and k = 0.05 .

Figure: Some Q functions of Floquet operator eigenstates when ǫ = 0.3 .


