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Quantum dynamics on a resonance.

Include a modulation of the potential depth.

H(t) =
p2

2
− κ(1 − 2ǫ cos t) cos(q)
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Quantum dynamics on a resonance.

H(t) =
p2

2
− κ(1 − 2ǫ cos t) cos(q)

Figure: Plot of classical stroboscopic phase space portraits. (a) ǫ = 0.0,
(b)ǫ = 0.1, (c) ǫ = 0.2, (d) ǫ = 0.3 .



What is a resonance.

H(J,Θ, t) = H0(J) + ǫH1(J,Θ, t)

H1 = 2κ cos t cos q.

ǫ = 0.

Canonical transform (q, p) → (J,Θ) such that H0 is a function of
J only and the classical frequency is ωcl(J)

ǫ 6= 0
Fourier analyse the first-order (in ǫ) term;

H1 =
∑

m=0, ±1, ±2,...

H1,2m(exp i(t + 2mΘ) + c .c .) .

Then first-order resonance solutions occur for J given by

2m ωcl(J) − 1 = 0 , m = 0, ±1, ±2, ... .



What is a resonance.

Second-order resonances.
find approximate action-angle variables (J̄ , Θ̄) for H(J,Θ, t) up to
and including the order ǫ terms.

if J is not close to a first-order resonance, use a canonical
transformation to a new Hamiltonian

H̄(J̄ , Θ̄, t) = H0(J̄) + ǫ2H2(J̄, Θ̄, t) + ... .

There is no order ǫ term because H1 is purely oscillatory.

Fourier analysis of the H2.

H2 =
∑

m=0, ±1, ±2

H2,2m (exp i(2t + 2mΘ) + c .c)

+ time independent terms .

second-order resonances occur for J̄ given by

mωcl(J̄) − 1 = 0 ,m = 0, ±1, ±2, ...



The pair of second order resonances.

second order resonances

ε=0.1

All the first-order resonances are clustered near the separatrix.
There is one second-order resonance ωcl(J̄) = ±1 giving two stable
fixed points of the stroboscopic map at (q, p) ≈ (0.0 ± 1.2) and
the width ∆J ≈ 0.44.



Classical dynamics on a second order resonance.

Use a Gaussian state, (q0, p0) = (0, 1.0), σq = 0.084 and
σp = 0.036, centered on the second-order resonance
(q, p) ≈ (0.0, 1.2).
Plot the momentum mean 〈p〉 and variance V (p) as a function of
the strobe number s a

s

s

Figure: Plot of classical momentum statistics versus strobe number s.
(a) ǫ = 0.0, (b) ǫ = 0.1. Solid line, 〈p〉; dashed line, V (p).



Classical dynamics on a second order resonance.
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Figure: Plot of classical momentum statistics versus strobe number s.
(c) ǫ = 0.2, (d) ǫ = 0.3. Solid line, 〈p〉; dashed line, V (p).



Classical dynamics on a second order resonance.

As the perturbation parameter ǫ is increased from 0.0 to 0.2

• the growth in momentum variance is suppressed and the mean
momentum remains near its initial value indicating that the
classical distribution is being localized about the stable fixed
point.



Classical dynamics on a second order resonance.

As the perturbation parameter ǫ is increased from 0.0 to 0.2

• the growth in momentum variance is suppressed and the mean
momentum remains near its initial value indicating that the
classical distribution is being localized about the stable fixed
point.

• The width of the stable region is increasing linearly with ǫ
until the classical distribution is contained within the region of
the elliptic fixed point.



Classical dynamics on a second order resonance.

As the perturbation parameter ǫ is increased from 0.0 to 0.2

• the growth in momentum variance is suppressed and the mean
momentum remains near its initial value indicating that the
classical distribution is being localized about the stable fixed
point.

• The width of the stable region is increasing linearly with ǫ
until the classical distribution is contained within the region of
the elliptic fixed point.

• when ǫ is increased to 0.3 the stable region of phase space
begins to shrink because of the destruction of KAM tori. As a
result we see that the classical distribution becomes
delocalized again.



Quantum dynamics on a second order resonance.

We will set k = 0.05. To a good approximation the band structure
of the driven Hamiltonian can be neglected and restrict to states
with the quasi-momentum p = 0.



Quantum dynamics on a second order resonance.

We will set k = 0.05. To a good approximation the band structure
of the driven Hamiltonian can be neglected and restrict to states
with the quasi-momentum p = 0.

The Floquet operator F̂ was found by numerically integrating the
Schrödinger equation in the momentum representation.

Ĥa(t) =
p̂2

2
+ 2κ (1 − 2ǫ cos t) sin2(q̂/2) .



Quantum dynamics on a second order resonance.

We will set k = 0.05. To a good approximation the band structure
of the driven Hamiltonian can be neglected and restrict to states
with the quasi-momentum p = 0.

The Floquet operator F̂ was found by numerically integrating the
Schrödinger equation in the momentum representation.

Ĥa(t) =
p̂2

2
+ 2κ (1 − 2ǫ cos t) sin2(q̂/2) .

The initial state |ψ〉 is a minimum-uncertainty state with
〈q̂〉 = 0.0, 〈p̂〉 = 1.0, and 〈∆p̂2〉 = 0.01.

it has a Q function equal to the classical probability distribution
used in the classical approximation.



Quantum dynamics on a second order resonance.

ǫ = 0

s

strobe number

Figure: Solid line, 〈p̂〉; dashed line, V (p̂).

The decrease in momentum variance when s is a multiple of 150
indicates a revival of the initial wave packet due to the quadratic
dependence of En(p) on n.



Quantum dynamics on a second order resonance.

ǫ = 0.1

strobe number

Figure: Solid line, 〈p̂〉; dashed line, V (p̂).



Quantum dynamics on a second order resonance.

ǫ = 0.2

s

strobe number

Figure: Solid line, 〈p̂〉; dashed line, V (p̂).



Quantum dynamics on a second order resonance.

ǫ = 0.3

strobe number

Figure: Solid line, 〈p̂〉; dashed line, V (p̂).

quantum tunneling between fixed points: dynamical tunneling.



Quantum dynamics on a second order resonance.

Phasor representation of the probability distribution of the state
|ψ〉 in the ǫ = 0.0 and ǫ = 0.2 bases of quasi-stationary states.

The length of each phasor χm equals the overlap probability
|〈en, p|ψ〉|2 and its angle equals the eigenphase −2π en(p)/k.

Figure: (a) ǫ = 0.0, (b) ǫ = 0.2 .



Quantum dynamics on a second order resonance.

Comparing the two distributions we see that as the perturbation
parameter is increased the support on the quasistationary states
has decreased to two states with almost equal quasifrequencies.

These states have opposite parity under p → −p. Denote as |e+〉
and |e−〉

The Husimi function for these states are localised on the second
order resonances.



Quantum dynamics on a second order resonance.

When ǫ is increased to 0.3 we would expect the quantum motion
to reflect the delocalization of the classical atomic distribution.

Since the minimum uncertainty state is the sum of two
quasistationary states with opposite parity we would expect to find
that it is now possible for the atom to coherently tunnel between
the reonances (q, p) ≈ (0.0, 1.2) and its reflected partner
(q, p) ≈ (0.0,−1.2).

This is due to the detuning of the two dominant quasi-energies.



Quantum dynamics on a second order resonance.

Initial state

|ψ〉 =
1√
2

(|e+〉 + |e−〉)

F̂ n|ψ〉 =
1√
2

(

e−inφ+ |e+〉 + e−inφ
− |e−〉

)

where
φ± = −2π e±/k

When n(φ− − φ+) = π, state is

≈ |e+〉 − |e−〉

, which must be localised on the opposite fixed point.



Quantum resonances.

There is a quantum analog of classical second order perturbation
theory that leads to the identification of first and second order
resonances.

Ĥ(t) = Ĥ0 + ǫĤ1(t) .

For ǫ = 0 the Floquet operator is

F̂ = exp

(

−2πi Ĥ0

k

)

,

where Ĥ0 = p̂2/2 − κ cos q̂.

Denote the stationary states of Ĥ0 with energy En(p) by |En, p〉,
then |En, p〉 is a quasi-stationary state for F̂ with quasi-energy
en(p) = En(p).



Quantum resonances.

In analogy with time-independent quantum perturbation theory we
assume that for small ǫ the perturbed quasistationary states |en, p〉
and quasifrequency en(p) are close to |En, p〉 and En(p)
respectively, and then attempt to find corresponding asymptotic
expansions in ǫ.



Quantum resonances.

Let |en, p, t〉 satisfy the time-dependent Schrödinger equation

ik
d

dt
|en, p, t〉 = Ĥ(t)|en, p, t〉

subject to the condition |en, p, 2π〉 = exp(−2πien(p)/k)|en, p, 0〉.

Define, |vn, p〉 = exp(ien(p)t/k)|en, p, t〉 which are periodic in t,
and

en(p)|vn, p〉 = −ik
d

dt
|vn, p〉 + Ĥ(t)|vn, p〉 .



Quantum resonances.

Seek,

en(p) = En(p) + ǫe
(1)
n (p) + ǫ2e

(2)
n (p) + O(ǫ3) ,

|vn, p〉 = |En, p, 0〉 + ǫ|v (1)
n , p〉 + ǫ2|v (2)

n , p〉 + O(ǫ3) .

As in classical p.t. singularities arise in these expansions at
resonances.

For each classical resonance ∆n ωcl(J) − l = 0 there will be energy
bands with En(p) and En−∆n(p) satisfying the near-resonance
condition En(p) − En−∆n(p) ≈ kl . The perturbed quasistationary
state |en, p〉 will rapidly develop a significant component along
|en−∆n, p〉 as ǫ is increased.



Quantum resonances.

This Floquet state is a superposition of a dominant state |E11, 0〉
and two other states |E9, 0〉 and |E13, 0〉 satisfying the
near-resonant conditions: E11(0) − E9(0) = 0.103 ≈ 2k , and
E11(0) − E13(0) = −0.101 ≈ −2k . The interference between near
resonant states has caused the Q function in the figure to become
concentrated about the stable regions of the classical second-order
resonance.


