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Quantum dynamics on a resonance.

Include a modulation of the potential depth.
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Quantum dynamics on a resonance.

H(t) = —2 — k(1 — 2ecos t) cos(q)

Figure: Plot of classical stroboscopic phase space portraits. (a) e = 0.0,
(b)e=0.1, (c) e=0.2,(d) e=0.3.



What is a resonance.

H(J,0,t) = Ho(J) + eH1(J, 0, t)

H; = 2K cos t cos q.

e=0.

Canonical transform (g, p) — (J,©) such that Hp is a function of
J only and the classical frequency is wq/(J)

e#0

Fourier analyse the first-order (in €) term;

Hy = Z Hiom(expi(t +2mO) + c.c.) .
m=0, £1, +2,...

Then first-order resonance solutions occur for J given by

2mwg(J)—1=0, m=0, £1, £2,....



What is a resonance.

Second-order resonances. o
find approximate action-angle variables (J,©) for H(J,©, t) up to
and including the order ¢ terms.

if J is not close to a first-order resonance, use a canonical
transformation to a new Hamiltonian

H(J,8,t) = Hy(J) + €Ha(J,0,t) + ...

There is no order ¢ term because H; is purely oscillatory.

Fourier analysis of the H,.

H, = D> Hapm(expi(2t +2m®) + c.c)
m=0, +1, £2
+ time independent terms .

second-order resonances occur for J given by

mwg(J)—1=0,m=0, +1, +2,.



The pair of second order resonances.
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All the first-order resonances are clustered near the separatrix.
There is one second-order resonance w¢/(J) = +1 giving two stable
fixed points of the stroboscopic map at (g, p) ~ (0.0 + 1.2) and
the width AJ ~ 0.44.



Classical dynamics on a second order resonance.

Use a Gaussian state, (qo, po) = (0,1.0), o4 = 0.084 and
op = 0.036, centered on the second-order resonance

(g,p) ~(0.0,1.2).
Plot the momentum mean (p) and variance V/(p) as a function of
the strobe number s a
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Figure: Plot of classical momentum statistics versus strobe number s.
(a) e=0.0, (b) e =0.1. Solid line, (p); dashed line, V(p).



Classical dynamics on a second order resonance.
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Figure: Plot of classical momentum statistics versus strobe number s.
(c) €e=0.2, (d) e =0.3. Solid line, {p); dashed line, V(p).



Classical dynamics on a second order resonance.

As the perturbation parameter € is increased from 0.0 to 0.2

e the growth in momentum variance is suppressed and the mean
momentum remains near its initial value indicating that the
classical distribution is being localized about the stable fixed
point.
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e The width of the stable region is increasing linearly with ¢

until the classical distribution is contained within the region of
the elliptic fixed point.



Classical dynamics on a second order resonance.

As the perturbation parameter € is increased from 0.0 to 0.2

e the growth in momentum variance is suppressed and the mean
momentum remains near its initial value indicating that the
classical distribution is being localized about the stable fixed
point.

e The width of the stable region is increasing linearly with ¢
until the classical distribution is contained within the region of
the elliptic fixed point.

e when € is increased to 0.3 the stable region of phase space
begins to shrink because of the destruction of KAM tori. As a
result we see that the classical distribution becomes
delocalized again.



Quantum dynamics on a second order resonance.

We will set k= 0.05. To a good approximation the band structure
of the driven Hamiltonian can be neglected and restrict to states
with the quasi-momentum p = 0.
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We will set k= 0.05. To a good approximation the band structure
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with the quasi-momentum p = 0.

The Floquet operator F was found by numerically integrating the
Schrodinger equation in the momentum representation.
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Quantum dynamics on a second order resonance.

We will set k= 0.05. To a good approximation the band structure
of the driven Hamiltonian can be neglected and restrict to states
with the quasi-momentum p = 0.

The Floquet operator F was found by numerically integrating the
Schrodinger equation in the momentum representation.

a2
At = B 4 20 (1~ 2ccost)sin’(a/2).

The initial state [¢) is a minimum-uncertainty state with
(§) = 0.0, (p) = 1.0, and (Ap?) = 0.01.

it has a @ function equal to the classical probability distribution
used in the classical approximation.



Quantum dynamics on a second order resonance.
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Figure: Solid line, (p); dashed line, V(p).

The decrease in momentum variance when s is a multiple of 150
indicates a revival of the initial wave packet due to the quadratic

dependence of E,(p) on n.



Quantum dynamics on a second order resonance.
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Figure: Solid line, (p); dashed line, V(p).



Quantum dynamics on a second order resonance.
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Figure: Solid line, (p); dashed line, V/(p).



Quantum dynamics on a second order resonance.
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Figure: Solid line, (p); dashed line, V(p).

quantum tunneling between fixed points: dynamical tunneling.



Quantum dynamics on a second order resonance.

Phasor representation of the probability distribution of the state
|1) in the e = 0.0 and € = 0.2 bases of quasi-stationary states.

The length of each phasor x,, equals the overlap probability
|(en, p|1)|? and its angle equals the eigenphase —27 e,(p)/k.
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Figure: (a) e =0.0, (b) ¢ =0.2.



Quantum dynamics on a second order resonance.

Comparing the two distributions we see that as the perturbation
parameter is increased the support on the quasistationary states
has decreased to two states with almost equal quasifrequencies.

These states have opposite parity under p — —p. Denote as |e;)
and |e_)

The Husimi function for these states are localised on the second
order resonances.




Quantum dynamics on a second order resonance.

When € is increased to 0.3 we would expect the quantum motion
to reflect the delocalization of the classical atomic distribution.

Since the minimum uncertainty state is the sum of two
quasistationary states with opposite parity we would expect to find
that it is now possible for the atom to coherently tunnel between
the reonances (g, p) ~ (0.0,1.2) and its reflected partner

(gq,p) =~ (0.0,—1.2).

This is due to the detuning of the two dominant quasi-energies.



Quantum dynamics on a second order resonance.

Initial state 1
) = 7 (les) +le-))
n _ 1 —ing4 —ing_
Frio) = 5 (€7 ler) + e o))
where
¢i = 27 ei/k

When n(¢_ — ¢4) = m, state is
~le)— e )

, which must be localised on the opposite fixed point.



Quantum resonances.

There is a quantum analog of classical second order perturbation
theory that leads to the identification of first and second order
resonances.

H(t) = Ho + eFh(t) .

For ¢ = 0 the Floquet operator is

. —2riF4
F =exp <77;(I 0> ,

where Hy = p?/2 — K cos §.

Denote the stationary states of Hy with energy En(p) by |En, p),
then |E,, p) is a quasi-stationary state for F with quasi-energy
en(p) = En(p).



Quantum resonances.

In analogy with time-independent quantum perturbation theory we
assume that for small € the perturbed quasistationary states |e,, p)
and quasifrequency ep(p) are close to |E,, p) and E,(p)
respectively, and then attempt to find corresponding asymptotic
expansions in e.



Quantum resonances.

Let |en, p, t) satisfy the time-dependent Schrodinger equation
. d ~
/RE\en, p,t) = H(t)|en, p, t)
subject to the condition |e,, p, 27) = exp(—2mien(p)/k)|en, p,0).

Define, |v,, p) = exp(ien(p)t/k)|en, p, t) which are periodic in t,
and

. d r
en(p)|vn>p> = _IRE|VH7P> + H(t)|Vmp> :



Quantum resonances.

Seek,

en(p) = En(p) +eet(p) + el (p) + O(3)
VarB) = |Enp,0) + el p) + v, p) + O(e?) .

As in classical p.t. singularities arise in these expansions at
resonances.

For each classical resonance Anw(J) — I = 0 there will be energy
bands with E,(p) and E,_an(p) satisfying the near-resonance
condition E,(p) — Ep—an(p) = kI. The perturbed quasistationary
state |e,, p) will rapidly develop a significant component along
len—an, P) as € is increased.



Quantum resonances.

This Floquet state is a superposition of a dominant state |Ej1,0)
and two other states |Eg,0) and |Eq3,0) satisfying the
near-resonant conditions: Ej1(0) — Eg(0) = 0.103 ~ 2k , and
E11(0) — E13(0) = —0.101 &~ —2k . The interference between near
resonant states has caused the @ function in the figure to become
concentrated about the stable regions of the classical second-order
resonance.



