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MATH4104 — ADVANCED HAMILTONIAN DYNAMICS & CHAOS
Second Semester Examination, November, 2005 (continued)

Q1. (a) Find the function that is related to
.o 2, . A
L(r, 0, ¢, 0, §) = %(02 +¢)sin’ 0 — —

by a Legendre transform with both 6 and (/5 active and the other variables
passive.
Show that the Legendre transform relations hold for your solution.

(4 marks)

Question 1 continued on next page. TURN OVER



MATH4104 — ADVANCED HAMILTONIAN DYNAMICS & CHAOS
Second Semester Examination, November, 2005 (continued)

Q1.

(b) Show carefully that the following Hamiltonians are integrable and give their
integrals of motion.

2
(i) H(q, p, t) = % + cos(q + wt) cos(q + 2wt)

(11) H(Gl, 02, Il, .[2) = 2_[12 + .[22 + 11]2 COS(301 — 02)
(6 marks)

Question 2 on next page. TURN OVER



MATH4104 — ADVANCED HAMILTONIAN DYNAMICS & CHAOS
Second Semester Examination, November, 2005 (continued)

Q2. (a) Give the primary resonance conditions for the following Hamiltonian.
H (0, 0y, I, 1) = 217 4+ 31,1, + 4el? sin(6s) cos(y) cos(6;)

(4 marks)

Question 2 continued on next page. TURN OVER



MATH4104 — ADVANCED HAMILTONIAN DYNAMICS & CHAOS
Second Semester Examination, November, 2005 (continued)

Q2.

(b) Construct the near identity transformation that transforms the Hamiltonian
in part a) to

K(¢1, do, Ji, Jo) = 2J7 + 3J1Jy + eJ: sin(2¢9 — ¢1)

to first order in e. Give the actual functions ¢;(0;, I;) and J;(6;, I;) to first
order in e.

(6 marks)

more space for question 2 over page. TURN OVER
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Second Semester Examination, November, 2005 (continued)

Space for question 2

Question 3 see next page. TURN OVER



MATH4104 — ADVANCED HAMILTONIAN DYNAMICS & CHAOS
Second Semester Examination, November, 2005 (continued)

47— /5

Q3. (a) Give the continued fraction expansion of TR

(3 marks)

Question 3 continued on next page. TURN OVER



MATH4104 — ADVANCED HAMILTONIAN DYNAMICS & CHAOS
Second Semester Examination, November, 2005 (continued)

Q3.

(b) Derive conditions on f(6,, I,.1) and g(6,, I,,41) for the following twist map to
evolve canonically.

In—f—l = In + €f(9n, In—i—l)
Opni1 = 0n + 21w (L11) + €9(0n, Int1), mod(2m)
(3 marks)

Question 3 continued on next page. TURN OVER



MATH4104 — ADVANCED HAMILTONIAN DYNAMICS & CHAOS
Second Semester Examination, November, 2005 (continued)

Q3.
(c) Show that the Standard Map

Iyt = I, — Ksind,

gn—l—l = On + In—|—1

is a product of two involutions. (4 marks)

Question 4 see next page. TURN OVER



MATH4104 — ADVANCED HAMILTONIAN DYNAMICS & CHAOS
Second Semester Examination, November, 2005 (continued)

Q4 What is the BGS conjecture ? In less than one page explain what is has to say
about the quantum description of systems that are classically chaotic.

(10 marks)

space for question 4 on next page. TURN OVER



MATH4104 — ADVANCED HAMILTONIAN DYNAMICS & CHAOS
Second Semester Examination, November, 2005 (continued)

Space for question 4

Question 5 on next page. TURN OVER



MATH4104 — ADVANCED HAMILTONIAN DYNAMICS & CHAOS
Second Semester Examination, November, 2005 (continued)

Qb5 Consider a system with integrable (regular) classical dynamics. Suppose the corre-
sponding quantum system is described by an N dimensional Hilbert space. Assume
that the dynamics of this system is well described by a suitable random matrix
ensemble and order the energy levels so that ¢; < ey... < ey. Let p.(A) be the
probability of obtaining an energy level spacing of A for the r*-nearest neighbour
spacing (that is to say the energy level spacing €,,, —€, = A for arbitrary n) . Show
that for systems with a regular dynamics this is given by

r—1
A -

assuming we have scaled the energy to give an average level spacing of unity.
(10 marks)

space for question 5 on next page. TURN OVER
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Second Semester Examination, November, 2005 (continued)

Space for question 5

Question 6 on next page. TURN OVER



MATH4104 — ADVANCED HAMILTONIAN DYNAMICS & CHAOS
Second Semester Examination, November, 2005 (continued)

Q6 Consider a quantum system described by a Hilbert space of dimension N. Let
|thp) be an arbitrary initial state. The survival probability, Py, (t), is defined as
the probability that the system will still be found in its initial state, [i), after a
time ¢ > 0. If we average over all initial states and over a suitable random matrix
ensemble it is possible to write the average survival probability as

9 N_1
Pl =
W=5r1 T v

/ " PN(2) cos(M)dA

where PV ()) is the probability that an energy level spacing of A occurs between
any pair of energy levels.

(a) Show that, in general,

N-1

S (N~ r)p ()

r=1

N 2
R ()

where p.()) is the probability of obtaining an energy level spacing of A for the
r**-nearest neighbour spacing

(2 marks)

(b) Prove that, for a system with regular dynamics the average survival probability,
P(t), never drops below its long time limit of 2/(N + 1), while for chaotic
systems it may drop below the long time limit for some time.

(8 marks)

space for question 6 on next page. TURN OVER
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