MATH4104 Advanced Hamiltonian Dynamics and Chaos.

This is a course on Classical and Quantum Hamiltonian Dynamics. The aim of the
first half of the course is to understand the basics of chaos in Classical Hamiltonian
Systems. There are a number of techniques, which we will learn about, that can be
employed to enable one to analyze and understand the presence of chaos in a given
Classical Hamiltonian System.

First we will review Lagrangian and Hamiltonian Mechanics. Then we will look at
Canonical Transformations, which are variable transformations that preserve the Hamil-
tonian structure. These can be used to analyze the resonances in a system. The presence
and size of these resonances is a major factor in the level of chaos present. We then look
at the KAM theorem, which uses Canonical transformations to prove that in a whole
class of systems "KAM tori” limit the extent of the chaos to subregions of the phase
space.

To investigate further we look at Twist Maps and in particular the Standard Map,
which is a particularly simple twist map that exhibits most of the typical behavior of
chaotic maps. At the end of the classical section we will look at some other examples,
e.g. chaos in Billiards.
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Section 1. Classical Dynamics

Section 1.1 Lagrangian Mechanics

Lagrange devised a general method for obtaining the equations of motion for a wide
class of mechanical systems. This included constrained systems. Consider a number of
particles P; with masses m; and position and velocity vectors r; and v;. Then for an
unconstrained system the equations of motion are simply Newton’s equations of motion:

m;v; =F; for i =1...N, where F; is the force acting on the particle P;.

But typically systems are constrained, for instance a bead on a wire is constrained to
move on the wire, or a pendulum bob is a fixed distance from the point of support, in
which case there are additional forces which are not simple to work out. But if you use
Lagrange’s method you never have to work them out.
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The simplest type of constraint to imagine is one that constrains the geometry of
the system. Think of the pendulum again. In 2D the bob is constrained to move in a
circle, so the motion has only one independent variable; . The space of possible motion
is is the circle (S), which is one dimensional. This is called the Configuration space
of the system S. The trick is to find new variables that reflect the dimension of the
Configuration space.

e Generalized coordinates If the configuration of a system S is is determined by
the values of a set of independent variables q1, qa, ..., ¢, then {q1, ¢, ..., ¢, } is said
to be a set of generalized coordinates for S.

Note that the variables ¢, g, ..., ¢, must be independent, that is there can be no
functional relationship connecting them.

Also the variables ¢, qo, ..., ¢, determine the configuration of the system S, so
that if the values of ¢y, go, ..., g, are known then the position of every particle of S
is determined.

The number of generalized coordinates needed to specify a configuration S is called
the degrees of freedom of S. But there may be more than one way to choose the
generalized coordinates. Suppose there are n of them. Then there are also n generalized
velocities:

q= (CI17Q27---;%) q: (C}lv(ij"WQH)

Since the actual position of a particle in the space r; depends on the generalized
coordinates the actual velocity is

or; . or; . or; .
1 .



In most cases the Lagrangian for a system is defined as the difference between the
Kinetic Energy and the Potential Energy of the system.

L(q: (.L t) = T(qa (.la t) - U(q7 t)

Hamilton’s Principle of Stationary Action can then be used to obtain La-
grange’s Equations of motion. (Note that in this course we will be mainly concerned
with systems without dissipation.) First imagine any path in a Configuration space.
Hamilton’s Principle of Stationary Action states that
Of all the kinematic motions that take a mechanical system from one given configuration
to another within a given time interval, the actual motion is the one that minimizes the
time integral of the Lagrangian of the system.

The idea is that physical processes are governed by minimizing principles. In practice
this means we need to be able to find stationary functions of, in this case, an integral
functional. Minimizing principles result in variational principles, which can be converted
to a differential equations by the calculus of variations.

Geodesics are a good example of a variational principal because geodesics are the paths
of shortest length in some geometry For a simple example take the points A = (0, 0)
and B = (1, 0) in R?. If y(z) is the path then the length of the path is

/ 1+ d da: where y(0) =0 and y(1) =0
\ T

Y| y(x) is a possible path

So, for a geodesic, we need to between (0,0) and (1,0)
minimize £(y)
over all possible functions y(x), ye) Path may vary but

end points remain fixed.

such that y(0) = 0 and y(1) = 0. A(0,0) B(1,0) X

Calculus of Varlatlons
Consider J[z] = f F(z, &, t)dt.

Suppose that the function (t) minimizes the functional J[z]. Then J[z| > J[z*].
Or J[z* + h] > J[z*] for all admissible variations h(t), with h(a) = 0 and h(b) =
Now assume that A(t) is small and using calculus

oF

J[z* + h] = J[z*] = / [ha—(x T, t) + hZI; (z*, &%, t)} dt + O (||h|]?)

where for i small the norm is defined as ||h|| = maza<i<p|h(t)| + Maza<ics |h(t)].
The second term can be rewritten by using integration by parts:

/h—m i t)dt = [h(t)aai(x i t)rb—/ ne (gF(x i t)) dt

t=a

But h(a) = 0 and h(b) = 0 so

b d (OF, ,
/h—x ¥, t)dt = /aha<%(x,x,t)>dt



This means that
* * ’ aF * ok d aF * ok 2
J[z* + h] — J[z7] —/a h [a—x(x , & ,t)—% (%(m , & ,t))} dt + O (||h|]?)

Now a local minimum requires J[z* + h] — J[z*] > 0 and because this must be true for
all admissible variations h(t) this implies that the integrand is zero:

oF . d (0F, ., .. .\ _
%(x,x,t)——<%(x,x,t))—0

The result is reversible.

e Euler-Lagrange Equation for one degree of freedom

If the function x* makes the integral functional

b
Jlz] = / Flz, &, t)dt
stationary, then z* must satisfy the Euler-Lagrange Equation
o _d (o
o0x 0%
The converse is also true.

For instance take the simple example of the geodesic, where

/Ul-i— dx where y(0) =0 and y(1) =

and for a geodesic, we need to minimize £(y) over all possible functions y(z), such that
y(0) =0 and y(1) = 0.

dy dy\? oF

So, using the notation ' = %’ the Euler-Lagrange Equation is

d(oFN _d (¥ ) _,
de \0y' ) dx V1+y? N

d
= y'=£=c = y=cr+d

But y(0) =y(1)=0 =c=d=0,s0y=0.



e Higher degrees of freedom In an n degree of freedom system q € R" If the
function q* makes the integral functional, usually called the action functional

Slq] = /tl L(q, q, t)dt

to

stationary, then q* must satisfy the n Euler-Lagrange Equations

oL d (0L
—— — | —1]1=0. 1< <
8qj dt (8(]]) 0 ( =J= 7’L)

simultaneously.

Using Lagrange’s equations is usually straightforward.
Consider the spherical pendulum . Using spherical polars, # and ¢, as the gener-
alized coordinates, the Lagrangian (the kinetic energy minus the potential energy) is
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Lagrange’s equations of motion are

ma?cosfsin0p? — ma’d =0 = 6 = cosfsinh¢?

and

d . )
o (ma2 sin? 0gb> =0 = ma’sin?f¢ =c the axial momentum is conserved.

Kepler’s Central Force Problem, with generalized coordinates r the distance be-
tween the masses and @ the angle the line between the masses makes with the horizontal.

mime

1 .
L= oH (7'“2 + 7’202) —U(r), where u= is the effective mass

mq +m2

Lagranges equations of motion are
ur92 —U —ur=0 and ur29 = constant of the motion.

One of the remarkable results of Hamilton’s principle is that
Lagrange’s equations of motion are invariant under transformations of the
generalized coordinates. Suppose we choose new generalized coordinates q' and so
we have a new action functional

t1
Siq] = / L(d, &, £)dt
to

Then the extremals of S[q] map into the extremals of S[q'] and vice versa. So the
equations of motion are invariant.



However the Lagrangian is not unique. In fact the addition to the Lagrangian of
a total time derivative does not change the paths of stationary action.
Consider the total time derivative of F(q, t)

dF(a,t) _N~OF | oF
a2 0g" T o

Now suppose that L' = L + % so that

t1 t1 t dF ¢
gmz/‘ﬂ@¢0“:/‘ﬂmmﬂﬁ+/-—%Jﬁ

to to to

But ftzl %dt = [F(q, t)];} which will not change under minimization because it is
only a function of the end points and the end points do not change as the path is varied.
So to minimize S’[q] we need to minimize S[q].

It is sometimes useful to use this result and choose a Lagrangian which is not strictly
the difference between the kinetic and potential energies.

Take the Driven pendulum where the support is moving vertically y,(t).

L=T—V=%m(vz+v§)—mgy
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Using the generalized coordinate 6 as shown

1 : A\ 2
L= 3™ (EQ cos” 06* + (y's(t) + £sin 00) ) —mg(ys — £cosb)
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The Lagrangian can be simplified by adding a total derivative:
Let F(6, t) = mly(t) cos 0 + my [ ys(t)dt — m [ 4,°(t)dt, then

dF . 1
P mlys(t) cos 0 — mlys(t) sin 00 + mgy,(t) — §my'32

: _ dF
and letting L' = L + %

1 ..
L' = §m£202 +ml (g + ys(t)) cos 0

which is an easier Lagrangian to work with. In particular the explicit time dependence
appears as a coefficient of the cos# term which results is parametric forcing.



Noether’s Theorem and conserved quantities

We have already seen that conserved quantities result when the Lagrangian is not
explicitly a function of one of the generalized coordinates. If say

oL

L
% =0  then, from the Euler-Lagrange equations, —— is a constant of the motion.
i

94

In the spherical pendulum the axial momentum is conserved because the Lagrangian is
not a function of ¢. The fact that the Lagrangian is not a function of ¢; implies an
underlying symmetry in the system. For instance the spherical pendulum is symmetrical
about the vertical axis. So it is the underlying symmetries of the system that imply the
conserved quantities. Noether’s theorem proves that the existence of conserved quantities
in a system is closely linked to the symmetries of the system. In fact she proved that
for any continuous symmetry there is a conserved quantity.

Consider a system underging a translation parametrised by s which does not change
the Lagrangian and which is not time dependent. (Actually time dependence can be
allowed.) The translated generalised coordinates will be denoted q; where qo = q.

Now q satisfies Lagranges equations

oL d (0L
dt( ) 0 (1<j<n)

8q]' (9q]-
. . -aqu . ..
So that multiplying by D5 and summing over j gives
"\ OL [0gs;] "\ d (0L [0gs
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oL
But the Lagrangian is unchanged by the translation so — 3 = 0.
s

— aq] Os |,._

Or rearranging

This means that

or

OL [0gs; _ .
Z . [ g ]} is a conserved quantity
s=0



Take the example of a particle in two dimensions where

1
L= _-m(i*+9?) —

2

U(z? 4+ y?)

Since the potential is a function of 7? = 2 + y? the rotation

< s > = ( CoS 5 —SlLs > < v ) leaves L unchanged.
Ys sins  coss Y
To see this
oL .0z 0y , ox dy

oL , . . /
5 0-U" (2z(—zssin s + ys coss) + 2y(—zscos s — ygsins)) = —U' (2z(y) + 2y(—z)) =0
As in the theorem )

OL _0Lor 0LOy 0L OLOj

ds 0r0ds Oyds 0ids OyO0s

Using Lagranges equations

OL _d (9L\0x 0Ld (9r\  d (9L\dy OLd (dy
Os dt \0i) 0s Oidt \0s dt \ 0y ) 0s 0Oydt \0s
oL _d (0Los LDy
ds dt \9i ds 0Oy Os
So
8_L =0= 8_L8_x + 8_L@ is a conserved quantit
ds 0 0s ' 0y0s duanity
Here OLdz 0L
T Y .
9i0s T ogos M) +ua)

which is the angular momentum.



