Section 1. Classical Dynamics

Section 1.10 Chaos in Billards.
Consider a particle moving freely in a region of the plane bounded by a closed curve B.
Assume that the particle moves without friction and is reflected elastically when it
hits B. In this case the angle of reflection equals the angle of incidence.
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Suppose as a simple example B is a circle. Then there are certain orbits which close.
These orbits trace out regular ploygons such as pentagons or star shapes. But there are
other orbits which never close so that they cover the whole boundary.
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Any orbit can be specified by the arc position s; on the boundary and the angle it’s
trajectory makes with the tangent to B at s. So one can think of the orbit as a map.

(80, ag) = (51, 1) = (82, 2)...

However it turns out to be more convienient to think interms of the tangential momentum

P = cos <;n+1):M(;n) on S XR
n+1 n

where M depends on the boundary B.
If B is a circle ag = a1 = o, so that p is a constant of the motion.
If a = % the orbit closes after NV bounces. For instance if « = 7 — p = 0 it closes
3T

after two bounces. If @ = 3 — p = cos(2F) closes after 5 bounces.

Circle Billard is just a twist map.

p p is a constant. Ko
~ a = I orbit closes after N bounces.
p=cos(a) a=m — p=0 it closes after two bounces.
ol - - art irrational 3 o 3
04.—?—>p—cos(?)
p=cos(31/5)| - - - - - orbit closes after 5 bounces.




Any elastic billard mapping is area preserving
Proving this result is tricky. The canonical variables are (s, p) as described. So what we

need to prove is that
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Consider the small change oy — ag+dayg. Define i) as the angle the forward tangent to B
at sp makes with the horiziontal, then ¢ also undergoes a small change: ¥y — 1y + di)g.

Billards with boundary B
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Then from the diagram v, — a; = ¥y + g and if dsg, dsi, day, dig are small

(580 sin ap + 581 sin a1 = pPo1 ((50[0 + 6¢0)
Since ;(s;) only and sy and «aq are independent
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and



Now the radius of curvature is

ds v ds dsy
R(Y) = — = s(v /dw’Rw' ) and —— = R(¢
() = g = ) = [ A R) = G = Rl and = R
so that since sq and o are independent (%‘g =0)
dsy  sinag pro dyg  sinag Po1
05 sina;  sinap dsg sina;  R(3p)sino
And since p = cos «
ds1 1 Jsy P10
dpy  sinagdoy  sinagsinog
%:—31 no doy = —sino % &%
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But 833 - Wia_z(l) - _zing? + R(1Z)(f))oslina1 so that
dp1  sinag | sinag Po1
dso R(%) RWO) R(l/)o)R(l/)l)
Lastly
dp1  sina; oy
dpy  sin o Oaxg
Where since 1y is not a function of ag then 80‘1 =1+ ‘Z’fll gzll =1+ m
% B Po1 _ sinag
Opo  R(¢1)sinag  sinag
This means that
g_zé g_;é . < :Eg? + R(w(soslina1) _sinagoslina1
op1 9p1 - sin g 4 sin a1 £01 £01 __ sinag
950 dpo R(¢1) ' R@o  R(o)R(y1) sinaoR($1) ~ sinag
The determinant is then
ds10p1 0s10pr sin Po1 Po1 sin oy n
0so Opy  Opo Osg sinag  R(ty) sin oy R(iy)sinag  sinay
P10 (Siﬂ @ sin Po1 ) _1
sin ap sin oy R(¢1) R(l/)o R(iﬁo)R(l/)l)



Calculating the Map
Given the curvature at any point on the boundary B you can obtain the map

¢1(1/)o, Oéo)a 041(1/)0, Oéo)

numerically. From this you can deduce the map on (s, p) through
sw) = [ B@I pa) = cosa.
2

Consider the slope of the arc between sy and s;. As s changes so does 1. Let (x, y)

A
be a point on B. Then—x%cos¢:>d—x:cos1/) @:sinw
As ds ds
As
Ay
B So Ax S1
y(w)-y(wo)
Yo tan (gorag Y LY (W)
B So X(w)-x(wo) X Ty X (o)
so that .
(1) — x(thy) = /cos¢ds :/ R(1)) cos drp
o
a1
Similarily y(11) — y(vo) = / R(%)) sin¢di) But the slope of the arc between sy and s;
o
is 1y + ap

y(¥1) — y(th)

z(1h1) — (o) = tan(yo +ao)

so that the equation

Sy, B(¥)sinypdy

Sy, B() cosppdy)

defines v (100, o). Then we can use the fact that ¢; — a; = g + ap to give

Oél(wOa 040) = ¢1(¢0> 040) — 1y — ap

tan (o + ap) =

Integrability
Like all maps the map is integrable if there is a constant of the motion.

F(s1, p1) = F(so, po)
The simplest billard, the circular billiard is integrable because
ap = ag = pp =py so that pis a constant.

Also since, 17 — a3 = Yy + g = Y1 = Yy + 2ay.
So using the fact that the curvature is the radius R we have that

¥
Rdy' = R(¢) — g) = s =5 +2Rcos 'py and p; =po

s(v) =

o



Fixed Points and Stability

There are no period-1 orbits, but there are two bounce orbits which are often easy
to identify. In the elliptical billiard they exist along the major and minor axes. To work
out their stability we need to work out the linearized matrix. For any two bounce orbit

ap = ag = 5 and R(¢y) = R(¢,) = Rso that

2

__sinag PO1 _ Po1
a(517 pl) . < sin o + R(wo)sinal) sin ap sin ap

s, p1) _ _ < gL e )
in in in £ £ £ _ 1
A(s0, po) (E(vﬁo) + R R(zﬂ%(%)) <smaﬁ%(w1) - zin%) R R R

(8(81,]91))2: 2(}%—1)2—1 2p(1—%)
O(so, o) RGE-DC-F) G- -
2 2
This has trace 4 (% — 1) — 2. So the orbit is stable if —2 < 4 (% — 1) — 2 < 2. That
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2
(% — 1) < andif p> R = that the orbit is stable if % <2
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Period-2 points for the Circular billiard.
Since for every period-2 orbit in a circular billiard p = 2R so that £ = 2. All two
bounce orbits are neutrally stable. Infact for the circular billiard

951 0s1 1 2R
or=( 4 & )=(o )
1 —28 \" 1 —28n
n _ in — in
Df _(0 sla) _(O sla

which has trace 2 so all periodic orbits are neutrally stable.
Period-2 points for the Elliptical billard.
If we parametrise the ellipse by A

x = acosAcos hM y = asin Asin hM
the ellipse is
x 2 y 2
S — 7 ) =1
<acosh]\/[> + <asinhM>

. . . o 1
which has eccentricity € = ——=.



Now the curvature is

ds dz\?  [dy\*d\
RW:@Z\/(%) () @

Since .
d dy
& tany = g—)‘ = —tan hM cot A
dx S

That is

dy tan hM
t = —tanhMcot \ = — = ————
any ol «© d\  sin® Asec2?
which you can then use to evaluate R(1))
Exercise show that

asin hM cos hM
R(y) = : §
(cos h2M sin? ¢ + sinh* M cos? w) 2

Now consider the two bounces on the major and minor axes. ¢» = 7 or 7. On the major
axis

w. asinhM p  2cosh3M
Sy 22 =2 M= —=—"—">2 tabl
R3) = ospaar = 0= 2acoshM = = =20 > 2 unstable
On the minor axis
a cos hM _ p  2sinh3M
Rm)=—5—F=p=2 hM = — = — < 2 stabl
() = Swpear =~ P~ 2esin R~ coshM Srable

Infact the elliptical billiard is also integrable.

2 2 .2
p* —e*costY(s) .

F(s = is a constant of the map.

(s, p) 1 — e2cos?1(s) P

Proving this involves alot of algebra.



The stadium considtes of two semicircles joined by straight lines. In the semi circles
R(¢) = R, but for the straight lines R = oo.
The two bounce orbit, lengthways is unstable as & = QR% > 2. But the family of
nonisolated two bounce orbits across the stadium are neutrally stable.
Period-2 orbits for the stadium
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However the stadium is not integrable, infact there are no invariant lines and it has
been shown that it is an ergodic billiard. That means that for almost every initial
condition (sg, po) the iterates will come arbitraily close to every point in the phase space
as n — oo.




Oval billiards, not elliptical billiards provide us with a near integrable system. Let

R(v) = a(1 4+ 6 cos 2¢))

Then j—fp = R() and % = cos 1 implies that

de acosP(l+dcos2y) = x=a((l+ é) sin + ésin?nﬁ
& 2 6
Similarily
) )
y=a((—1+ 5) cos ) + 5 cos 31
and

s(1)

(
There two bounce orbits at 1) = 7, 37” and at ¢ = Om. Like the ellipse the long one is
unstable.

a(y — g + g)sin2¢

T 5 p o 2149
R(2)—a(1 d) and p—2a(1+3 = 5= 1-9) > 2

Unlike the ellipse the oval is not integrable. As ¢ is increased from zero (the circular
billiard) it appears to mimick the elliptical billiard but infact the separatrix is chaotic.
Infact thought of as a perturbation from the elliptical billiard it exhibits all the usual
resonance behaviour we expect from near integrable systems. The separatrix is chaotic
and increasingly so as J is increased from zero. Interesting four bounce orbits or period-4
orbits are seen for larger values of §.



