
Section 1. Classical Dynamics

Section 1.10 Chaos in Billards.

Consider a particle moving freely in a region of the plane bounded by a closed curve B.
Assume that the particle moves without friction and is reflected elastically when it

hits B. In this case the angle of reflection equals the angle of incidence.
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Suppose as a simple example B is a circle. Then there are certain orbits which close.
These orbits trace out regular ploygons such as pentagons or star shapes. But there are
other orbits which never close so that they cover the whole boundary.
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Any orbit can be specified by the arc position si on the boundary and the angle it’s
trajectory makes with the tangent to B at s. So one can think of the orbit as a map.

(s0, α0) → (s1, α1) → (s2, α2)...

However it turns out to be more convienient to think interms of the tangential momentum

p = cosα

(

sn+1

pn+1

)

= M

(

sn
pn

)

on S × R

where M depends on the boundary B.
If B is a circle α0 = α1 = αi, so that p is a constant of the motion.
If α = πK

N
the orbit closes after N bounces. For instance if α = π → p = 0 it closes

after two bounces. If α = 3π
5
→ p = cos(3π

5
) closes after 5 bounces.

Circle Billard is just a twist map.
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p is a constant.
α = πK

N
orbit closes after N bounces.

α = π → p = 0 it closes after two bounces.
α = 3π

5
→ p = cos(3π

5
)

orbit closes after 5 bounces.



Any elastic billard mapping is area preserving

Proving this result is tricky. The canonical variables are (s, p) as described. So what we
need to prove is that

∂(s1, p1)

∂(s0, p0)
= det

(

∂s1
∂s0

∂s1
∂p0

∂p1
∂s0

∂p1
∂p0

)

= 1

Consider the small change α0 → α0+dα0. Define ψ as the angle the forward tangent to B
at s0 makes with the horiziontal, then ψ also undergoes a small change: ψ0 → ψ0 + dψ0.
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     ψ1−α1=  ψ0 +α0
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ψ0 +d ψ0 

ψ1 +d ψ1 

s1

α1 +d α1 

α0 +d α0 

ψ1−α1ψ1

δs0 sinα0  + δs1 sinα1  




            = ρ01(δα0 + δψ0) 

α1

ρ01
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α0

δs0

δs0 sinα0

δs1 sinα1
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δs0 sinα0

Billards with boundary B

Condition 1

Condition 2

Then from the diagram ψ1 − α1 = ψ0 + α0 and if ds0, ds1, dα1, dψ0 are small

δs0 sinα0 + δs1 sinα1 = ρ01(δα0 + δψ0)

Since ψi(si) only and s0 and α0 are independent

⇒
∂s1

∂s0
= −

sinα0

sinα1
+ ρ01

∂ψ0

∂s0

and
∂s1

∂α0
=

ρ01

sinα1



Now the radius of curvature is

R(ψ) =
ds

dψ
⇒ s(ψ) =

∫ ψ

π

2

dψ′R(ψ′) ⇒
ds0

dψ0
= R(ψ0) and

ds1

dψ1
= R(ψ1)

so that since s0 and α0 are independent (∂α0

∂s0
= 0)

∂s1

∂s0
= −

sinα0

sinα1
+

ρ10

sinα1

dψ0

ds0
= −

sinα0

sinα1
+

ρ01

R(ψ0) sinα1

And since p = cosα
∂s1

∂p0

= −
1

sinα0

∂s1

∂α0

= −
ρ10

sinα0 sinα1

∂p1

∂s0
= − sinα1

∂α1

∂s0
= − sinα1

(

∂ψ1

∂s0
+
∂ψ0

∂s0

)

But ∂ψ1

∂s0
= ∂ψ1

∂s1

∂s1
∂s0

= −
sinα0

sinα1

+ ρ01
R(ψ0) sinα1

so that

∂p1

∂s0
=

sinα0

R(ψ1)
+

sinα1

R(ψ0)
−

ρ01

R(ψ0)R(ψ1)

Lastly
∂p1

∂p0
=

sinα1

sinα0

∂α1

∂α0

Where since ψ0 is not a function of α0 then ∂α1

∂α0

= −1 + ∂ψ1

∂s1

∂s1
∂α1

= −1 + ρ01
R(ψ1) sinα1

∂p1

∂p0
=

ρ01

R(ψ1) sinα0
−

sinα1

sinα0

This means that

(

∂s1
∂s0

∂s1
∂p0

∂p1
∂s0

∂p1
∂p0

)

=





(

−
sinα0

sinα1

+ ρ01
R(ψ0) sinα1

)

−
ρ01

sinα0 sinα1
(

sinα0

R(ψ1)
+ sinα1

R(ψ0

−
ρ01

R(ψ0)R(ψ1)

) (

ρ01
sinα0R(ψ1)

−
sinα1

sinα0

)





The determinant is then

∂s1

∂s0

∂p1

∂p0
−
∂s1

∂p0

∂p1

∂s0
=

(

−
sinα0

sinα1
+

ρ01

R(ψ0) sinα1

)(

ρ01

R(ψ1) sinα0
−

sinα1

sinα0

)

+

ρ10

sinα0 sinα1

(

sinα0

R(ψ1)
+

sinα1

R(ψ0
−

ρ01

R(ψ0)R(ψ1)

)

= 1



Calculating the Map

Given the curvature at any point on the boundary B you can obtain the map

ψ1(ψ0, α0), α1(ψ0, α0)

numerically. From this you can deduce the map on (s, p) through

s(ψ) =

∫ ψ

π

2

R(ψ′)dψ′ p(α) = cosα.

Consider the slope of the arc between s0 and s1. As s changes so does ψ. Let (x, y)

be a point on B. Then
∆x

∆s
≈ cosψ ⇒

dx

ds
= cosψ

dy

ds
= sinψ


B s0





ψ0

s1

x(ψ1)− x(ψ0)




B s0




ψ
∆x

∆s
∆y

y(ψ1)− y(ψ0)
α0

tan (ψ0+α0) = 
y(ψ1)− y(ψ0)
x(ψ1)− x(ψ0)

so that

x(ψ1) − x(ψ0) =

∫

cosψds =

∫ ψ1

ψ0

R(ψ) cosψdψ

Similarily y(ψ1) − y(ψ0) =

∫ ψ1

ψ0

R(ψ) sinψdψ But the slope of the arc between s0 and s1

is ψ0 + α0

y(ψ1) − y(ψ0)

x(ψ1) − x(ψ0)
= tan(ψ0 + α0)

so that the equation

tan(ψ0 + α0) =

∫ ψ1

ψ0

R(ψ) sinψdψ
∫ ψ1

ψ0

R(ψ) cosψdψ

defines ψ1(ψ0, α0). Then we can use the fact that ψ1 − α1 = ψ0 + α0 to give

α1(ψ0, α0) = ψ1(ψ0, α0) − ψ0 − α0

Integrability

Like all maps the map is integrable if there is a constant of the motion.

F (s1, p1) = F (s0, p0)

The simplest billard, the circular billiard is integrable because

α1 = α0 ⇒ p1 = p0 so that p is a constant.

Also since, ψ1 − α1 = ψ0 + α0 ⇒ ψ1 = ψ0 + 2α0.
So using the fact that the curvature is the radius R we have that

s(ψ) =

∫ ψ

π

2

Rdψ′ = R(ψ −
π

2
) ⇒ s1 = s0 + 2R cos−1 p0 and p1 = p0



Fixed Points and Stability

There are no period-1 orbits, but there are two bounce orbits which are often easy
to identify. In the elliptical billiard they exist along the major and minor axes. To work
out their stability we need to work out the linearized matrix. For any two bounce orbit
α0 = α1 = π

2
and R(ψ0) = R(ψ1) = Rso that

∂(s1, p1)

∂(s0, p0)
=





(

−
sinα0

sinα1

+ ρ01
R(ψ0) sinα1

)

−
ρ01

sinα0 sinα1
(

sinα0

R(ψ1)
+ sinα1

R(ψ0

−
ρ01

R(ψ0)R(ψ1)

) (

ρ01
sinα0R(ψ1)

−
sinα1

sinα0

)



 =

(

ρ

R
− 1 −ρ

2
R
−

ρ

R2

ρ

R
− 1

)

(

∂(s1, p1)

∂(s0, p0)

)2

=

(

2
(

ρ

R
− 1
)2

− 1 2ρ
(

1 −
ρ

R

)

2
R

(

ρ

R
− 1
) (

2 −
ρ

R

) (

ρ

R
− 1
)2

− 1

)

This has trace 4
( ρ

R
− 1
)2

− 2. So the orbit is stable if −2 < 4
( ρ

R
− 1
)2

− 2 < 2. That

is
( ρ

R
− 1
)2

< and if ρ > R ⇒ that the orbit is stable if
ρ

R
< 2

circular billard
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Period-2 points for the Circular billiard.

Since for every period-2 orbit in a circular billiard ρ = 2R so that ρ

R
= 2. All two

bounce orbits are neutrally stable. Infact for the circular billiard

Df =

(

∂s1
∂s0

∂s1
∂p0

∂p1
∂s0

∂p1
∂p0

)

=

(

1 −
2R

sinα

0 1

)

Dfn =

(

1 −
2R

sinα

0 1

)n

=

(

1 −
2Rn
sinα

0 1

)

which has trace 2 so all periodic orbits are neutrally stable.
Period-2 points for the Elliptical billard.

If we parametrise the ellipse by λ

x = a cosλ coshM y = a sin λ sinhM

the ellipse is
( x

a cos hM

)2

+
( y

a sinhM

)2

= 1

which has eccentricity e = 1
cos h2M

.



Now the curvature is

R(ψ) =
ds

dψ
=

√

(

dx

dλ

)2

+

(

dy

dλ

)2
dλ

dψ

Since
dy

dx
= tanψ =

dy

dλ
dx
dλ

= − tanhM cotλ

That is

tanψ = − tanhM cotλ⇒
dψ

dλ
=

tanhM

sin2 λ sec2 ψ

which you can then use to evaluate R(ψ)
Exercise show that

R(ψ) =
a sinhM cos hM

(

cosh2M sin2 ψ + sinh2M cos2 ψ
)

3

2

Now consider the two bounces on the major and minor axes. ψ = π
2

or π. On the major
axis

R(
π

2
) =

a sinhM

cosh2M
⇒ ρ = 2a coshM ⇒

ρ

R
=

2 cosh3M

sin hM
> 2 unstable

On the minor axis

R(π) =
a coshM

sin h2M
⇒ ρ = 2a sinhM ⇒

ρ

R
=

2 sinh3M

coshM
< 2 stable

Infact the elliptical billiard is also integrable.

F (s, p) =
p2

− e2 cos2 ψ(s)

1 − e2 cos2 ψ(s)
is a constant of the map.

Proving this involves alot of algebra.



The stadium considtes of two semicircles joined by straight lines. In the semi circles
R(ψ) = R, but for the straight lines R = ∞.

The two bounce orbit, lengthways is unstable as ρ

R
= 2R+η

r
> 2. But the family of

nonisolated two bounce orbits across the stadium are neutrally stable.
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Period-2 orbits for the stadium.

R

η

However the stadium is not integrable, infact there are no invariant lines and it has
been shown that it is an ergodic billiard. That means that for almost every initial
condition (s0, p0) the iterates will come arbitraily close to every point in the phase space
as n→ ∞.



Oval billiards, not elliptical billiards provide us with a near integrable system. Let

R(ψ) = a(1 + δ cos 2ψ)

Then ds
dψ

= R(ψ) and dx
ds

= cosψ implies that

dx

dψ
= a cosψ(1 + δ cos 2ψ) ⇒ x = a((1 +

δ

2
) sinψ +

δ

6
sin 3ψ

Similarily

y = a((−1 +
δ

2
) cosψ +

δ

6
cos 3ψ

and

s(ψ) = a(ψ −
π

2
+
δ

2
) sin 2ψ

There two bounce orbits at ψ = π
2
, 3π

2
and at ψ = 0π. Like the ellipse the long one is

unstable.

R(
π

2
) = a(1 − δ) and ρ = 2a(1 +

δ

3
⇒

ρ

R
=

2(1 + δ
3
)

(1 − δ)
> 2

Unlike the ellipse the oval is not integrable. As δ is increased from zero (the circular
billiard) it appears to mimick the elliptical billiard but infact the separatrix is chaotic.
Infact thought of as a perturbation from the elliptical billiard it exhibits all the usual
resonance behaviour we expect from near integrable systems. The separatrix is chaotic
and increasingly so as δ is increased from zero. Interesting four bounce orbits or period-4
orbits are seen for larger values of δ.


