Section 1. Classical Dynamics

Section 1.2 Hamiltonian Mechanics

Lagranges equations can be formulated as a set of first order equations by using the
momentum rather than the velocity. This elegant formulation, known as Hamilton’s
equations paves the way for future Hamiltonian-Jacobi theory, chaos theory and quan-
tum mechanics.

Firstly define the conjugate momentum as
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However to transform completely to these new variables (q, p, t), we must rewrite the
Lagrangian in terms of the conjugate momenta, that is we must solve for q(q, p, t).

Take the orbit problem. A particle of mass m is attracted by gravitation to a mass
M fixed at the origin. In terms of polar coordinates the lagrangian is
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Now Lagranges equations tell us that
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So that Lagranges two equations of motion are equivalent to the following four first order
equations.
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This is the Hamiltonian form of Lagranges equations.



Legendre Transformations

One might naively think that there are cases where one cannot derive the Hamiltonian
form from the Lagrangian one. However the conversion from one form to the other is an
example of a Legendre Transformation and can always be performed.

Consider a function F'(uq, us) and define
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Is it possible to write the inverse formulas in the form
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for some function G(vy, v9)?
For a simple case, say F' = 2113 + 3uqus + u%

= v1 = 4uq + 3us, Vo = 3u1 + 2uq
Solving for u; and uy gives
U = —2v1 + 3vo, Uy = 3v; — 4vg

So that G = —v? + 3vyvy — 2v3, works! But will it always? In fact it will.
Consider the expression

X = F(u1, ug) + G(v1, v2) — (u1v1 + ugvs),
If we think of v (u1, us) and ve(us, us) then X (uq, us). So that
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Similarly X (u1, us) is independent of uy. It follows that X (uq, us) is a constant. Without
loss of generality we can take that constant to be zero as it could be absorbed into G.
So that
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F(uy, ug) + G(v1, v2) = (u1vy + ugvs) defines G(vy, vg).

G(’Ul, U2) = (’U,11)1 + UQ’UQ) — F(’U,l, ’LLQ).

( In the previous example
G(vy, v3) = (=201 + 3va) vy + (31 — 4vg) vy — 2(—2v; + 3v2)? — 3(—2v1 + 3vy) (3vy — 4vy) —
(31)1 — 41)2)2 = —’U% + 3U1U2 — 2’05)



Active and Passive variables
The variables u = (uy, ug) and v = (v, v2) are active variables, as they are trans-
formed. However the functions F' and G may contain passive variables that are not
transformed. Suppose for instance that F' = F(u;, uy, w) then by definition G may also
be a function of w since

G(v1, vo, w) = (u1v1 + ugve) — F(u1, uz, w).

If v; and v, are defined as before
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they may also be functions of w. However one can show that
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Legendre Transforms can be defined for any number of active and passive variables.
If u = (uy, ug, ...u,) are active variables and w = (wy, ...w,) are passive variables of
F(u, w) and v are functions of the active variables such that

v = grad,F(u, w)
then the inverse formula can always be written in the form
u = gradyG(v, w)
where the function G(v, w) is related to the function F'(u, w) by the formula
G(v,w)+ F(u,w)=uv

where u- v = w101 4+ Ugvg + « + - 4+ UpUy,.
Also the derivatives of the F' and G with respect to the passive variables are given by

gradw F(u, w) = —gradyG(v, w)

The Hamiltonian
Hamilton’s Equations of motion can be derived from the Hamiltonian of a system.
Since they are a function of the conjugate momenta, which are defined by
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rather than q, the first step is to eliminate the coordinate velocities q in the Lagrangian
in favor of the the momenta. This means that the formula for p must be inverted to
express  in terms of q, p, and ¢. This is what Legendre transforms do! In fact
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where the Hamiltonian H is the Legendre transform of the Lagrangian L(q, q, t).



This means that the Hamiltonian is given by

H(qa b, t) = qp - L(qa (.L t)a

or in component form
n
j=1
Since both time and q are passive variables in the Legendre transform
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graqu(q, (.1’ t) = —graqu(q, p, t)
Using this and Lagranges equations of motion gives p in terms of the Hamiltonian,
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So Hamilton’s Equations of motion are

q = gradyH(q, p, t) p = —gradsH(q, p, t)

or
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Example For the orbit problem

r

; 1 . M
H(Tv 0: Dr, pH) = 'f'p'r + Hpg — <§m <T’2 + 7.202) _ m G)

Using the fact that

q=Pr and f = p_92’
m mr
/. 2 2\ mMG 1p?2 1 p2 mMG
H(r, 0, prape)=&+&——m (&) +r2( Po ) + = _&+_p_9+
m mr? 2 m mr?2 r 2m  2mr? r
So Hamilton’s equations of motion are
. OH p, . OH Do
T = =— and f0=_—-—=—,
op, m Opy  mr?
and - , MG -
. Dy m .
Dbr 87’ mr3 + 7‘2 an yo —80

Not really an improvement if you want a practical solution!




Properties of the Hamiltonian and other notes.

1 If the Hamiltonian is not explicitly a function of time then it is a constant of the
motion.

2 If the Hamiltonian is not explicitly a function of a generalized coordinate, say gj,
then the generalized momentum p; is a constant of the motion.

3 Liouvilles’s Theorem The Phase space volume is preserved by the phase flow.

4 Poisson Brackets Hamilton’s equations have a particularly elegant form when
written in terms of the Poisson Bracket.

1. If the Hamiltonian is not explicitly a function of time then it is a
constant of the motion.
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Systems where H = H(q, p) are called autonomous. For instance the Hamiltonian in
the orbit problem is autonomous so H = %”% + %T:;Ez + mTMG is a constant of the motion.
In fact for an autonomous Hamiltonian each phase path must lie on a ”surface”
of constant energy within the phase space. This means that a one degree of freedom,
autonomous Hamiltonian system can be solved by quadrature.

Since
H(q,p) = Hy we can solve for p as a function of ¢ p = f(q)

Now Hamilton’s equation

H
j= aa—(q, f(g)) is a function of ¢,
p

so it can be separated and, in theory solved.

Take the example of the linear pendulum
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Then solving for p gives p = \/<H0 — mon) 2m.

From Hamilton’s first equation ¢ = 2 = \/2 (HO - mw%%) /m so separating
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Solving for ¢ gives




Although solutions are obviously useful the constant Hamiltonian can tell us a lot
about the system.
Take the nonlinear Pendulum
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The curves of constant Energy, the contours of H = H; = % — mglcos {, are

the phase curves of the system. Thought of as a surface, the peaks and pits of the
”Hamiltonian range” are the centers of the system and the mountain passes are the
saddles.

The separatrices, given by H = mg/, connecting the saddles divide the periodic
motion from the librational motion.

The nonlinear Pendulum can also be solved by quadrature, but the solutions are
Elliptic integrals. Taking the simple case where m = ¢ =1 and w? = g,
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So Hamilton’s first equation is

g=p= \/Q(H—l-wgcosq)

which can be separated and inside the separatrix has the solutions:

g = 2arcsin(ksn(wo(t — to), k)), p = 2woken(wo(t — o), k)
(A)(Q) + H . 2 : 2
where k = 5.7 < 1, since H < wj. Actually on the separatrix, where H = wy,
Wo
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~ cosh(wo(t — 1))
Note that as ¢ — oo then p — 0.



2. If the Hamiltonian is not explicitly a function of a generalized coordi-
nate, say ¢;, then the generalized momentum p; is a constant of the motion.
This follows from the Hamilton equation
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For instance in the orbit problem the Hamiltonian H = %p% %% + mTMG is not a
function of 6, so that py = —%—ZI = 0, which implies that py is a constant.

Phase Space Reduction If the Hamiltonian is not explicitly a function of g;, which
means that p; is a constant of the motion, then the dimension of the phase space is
effectively reduced by two (the number of degrees of freedom is reduced by one). This
will mean that a 2 degree of freedom system can be solved by quadrature. For instance,
with py as a constant in the orbit problem the Hamiltonian is effectively only a function
of (r, pr). So that
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which is separable for py equal to a constant.

Note that the Phase Space description is not unique.
Because different Lagrangians can be used to describe the same physical system, even
if the position variables are the same the momenta may differ.
Two Lagrangians for the same system may differ by a total time derivative.

L’_L+£ = .—a_L but ’—a_L,—a_L_i_i@
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Take the example of the driven pendulum.
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But
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This means that the phase space descriptions will be different.



3. Liouvilles Theorem

Liouville’s Theorem says that the phase space volume is preserved by the phase flow.
So, as time evolves, a region in the phase space may be stretched and sheared by the flow

but its area will be preserved.

Liouvilles Theorem

In the Proof we assume that the equations of motion are

x = F(x,t) where F; have the particular form of Hamiltons equations of motion
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So we take x = (q1, p1, g2, P2-..) this means that F; = %, Fy=—5, Fs=
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For simplicity I will just take a one degree of freedom system, but the more general

case is very similar.

Consider a set of phase points moving about the (z1, 22) plane, which at time ¢t =0
occupies a region Ry. After a time ¢, a typical point x of Ry has moved to a position
X = X(x, t) and the set as a whole now occupies the region R;. ( In two dimensions Ry
and R; are areas in the (x, x9) plane, but in general they will be volumes.) This area is

given by
ox,  0x,
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is the Jacobian of the transformation X = X(x, 7).
Now for small ¢, X may be approximated by

X(x, t) = X(x, 0) + t%—):(x, 0) + 0(#*) = x + tF(x, 0) + 0(t%)

This means that

oF, OF,
o0x 1 o0x 2

J = 1+t<—+—> +0(t%) =1+t div F(x, 0) 4 0(t?)
t=0

Substituted back into the equation for the area
V(t) = / (141 div F(x, 0)) dzydzs + 0(t2)
Ry

where t is small, it follows that
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However the value ¢t = 0 was arbitrarily chosen and the result will hold for any ¢:

av(t) _ / div F(x, t)dz1dzs
TR

Now comes the point where we use the fact that the system is Hamiltonian. Recall that
X = ((h, P1, G2, pg) this means that F1 = 9H F2 =94 F3 = 9H .... S0 that

op1”’ " 9q1’ — opy’
0 O0H 0 o0H
div F=——+—<——)+---:0+0+---=0
0q1 Opy Op1 0qy

dVv (t)

So

such as stable periodic orbits.

Poincare Recurrence follows from Liouville’s theorem. It only applies to au-
tonomous Hamiltonian systems which are confined to some bounded region D. If this is
the case then the theorem states that almost all trajectories eventually return arbitrarily
close to where they started.

Poincare Recurrences

= 0, which proves the result. This means that there can be no attracting sets,

Areas remain the same
Ro=Rt =R2t =R3r1 -
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To prove this we must show that for any finite region R, there are points in the
region that return to Ry. So take any finite neighborhood Rj of x¢ and consider suc-
cessive images of Ry, which we shall call R;, under time evolution. Consider the regions
R., Ry, R3;,...R,,. By Liouville’s theorem all of these regions have the same volume.
But we also know that all of these regions lie within some fixed volume. So as we increase
n one of them must overlap a previous region.

Now suppose that it is R,,, that overlaps with Ry,, for some 0 < k& < m. This means
that there must be points x; € Rg and x2 € Ry such that X (x;, m7) = X(xz2, k7).

Now we use the fact that the system is autonomous. In this case

X(x1, m7) = X(x2, k1) = X(x1, (m —k)7) = X(x2, 0) = X2

So the x; € Ry evolves to x3 after a time (m — k)7, which is also in Ry. Since this phase
point has returned to Ry the theorem is proved.

The result is surprising because it implies that for any choice of initial conditions the
system comes arbitrarily close to reassuming those conditions at a later time. Ofcourse
the actual time frame is not specified.



4. The Poisson Bracket of two functions F' and G is given by

{F,G}:i(ai%_aig)
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If we now consider the evolution of any function F(q, q, t) under time
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using Hamilton’s equations of motion: ¢; = ng and p; = —g—g. This becomes
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Hamilton’s equations = % = {¢;, H}, % ={p;, H}

and if the Hamiltonian is not a function of time — = {H, H} = 0.

Poisson brackets are antisymmetric, bilinear and satisfy Jacobi’s identity.

antisymmetric {F, G} =—{G, F}

bilinear {F, G+ H}={F, G} +{F, H}, {F,cG}={cF, G} =c{F, G}

Jacobi’s identity {F,{G, H}}+{H, {F,G}}+{G, {H, F}} =0

Also if F' is time independent and conserved by the evolution under the Hamiltonian
the Poisson Bracket of F' with H is zero.
dF
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Periodically Driven Systems

The phase space of a time dependent one degree of freedom system is three dimen-
sional or has 1% degrees of freedom. The Hamiltonian is no longer a constant of the
motion and such systems cannot be solved by quadrature. In fact nonlinear 1% degree
of freedom systems can have chaotic solutions. Their motion can be hard to visualize in
3D, so they are usually analyzed by considering the Poincaré Map.

A Poincaré section or map is a device invented by Henri Poincaré for analyzing systems
of higher than two dimensions. Poincaré realized that much of the important information
about a trajectory was encoded in the points in which the trajectory passed through a 2-
dimensional plane, or surface of section . The order of these intersection points defines
a map in the surface of section X.

Periodic orbit

Each time the trajectory pierces ¥ in a downward direction we record the point. The
successive piercings are the successive iterates of the map. For instance if the trajectory
is a simple periodic orbit the successive piercings give just one point and the point is a
fixed or critical point of the map.

The simplest Poincaré maps to calculate are those of periodically forced systems.
Consider the driven linear pendulum

P’ 7
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Hamilton’s equations of motion are
q=p P = —wiq + € cos(wt)
Or G + wjq = ecos(wt). This has the solution

q = Acos(wo(t — o)) + % cos(wt) = quasi periodic motion for w # wy.

So solutions lie on a torus. (The phase space is R* X S.) This is most easily thought of
as a surface in 3D with the plane ¢t = 27” identified with the plane ¢ = 0. The Poincaré
maps is then a stroboscopic map (g, p,) = ((1(2”77r + 1), p(Z”T” +tg)).

If ®2 = I je. a rational, the motion is periodic. If “2 is irrational the trajectory
covers the torus, passing arbitrarily close to any point on the torus.

The Poincaré map for the case 2> = - consists of m points or iterates. The solution
is said to be a period-m orbit, it is a periodic orbit. If ¢ is irrational the Poincaré map
fills out a closed invariant curve. Such behavior is indicative of regular (quasi periodic

rather than chaotic) trajectories and typical of linear forced systems.



Nonlinear systems are typically quite different. In fact some level of chaos is often
present. (We will cover how to tell if a system has chaotic solutions later.) For the
moment, we will take two, rather different cases of systems with chaos and look at what
their Poincaré maps tell us.

The first system is a 1% degree of freedom system; the Driven Nonlinear Pendulum

Hig p. 1) = & — o
(g, p, t) = 5 wy (1 + ecos(wt)) cosq

If € = 0 this is the nonlinear pendulum which can be solved by quadrature. However
even for small € this system has complex solutions. In the following Poincaré maps some
initial conditions give iterates that trace out what appear to be simple closed curves.
This suggests the presence of tori and trajectories which eventually cover them. Other
trajectories, possibly chaotic, exist, particularly where the separatrix would be for the
case with e = 0.

wo =1, w=1.9and €=0.025 w=12,¢=0.1
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Also noticeable are resonance islands replacing the tori. The width of these islands
increases with € and their presence is in some sense the reason for the chaos. For much
larger values of chaos the phase space is dominated by a chaotic sea, relieved only by the
occasional resonance island.

w=1175,¢£=0.3
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Henon Hiles
The Henon Hiles system is a two degree of freedom system, in which the coupling
is nonlinear. Without the coupling the system is linear and comprises of two linear

oscillators. ) . )
H(z, y, pay py) = 502 + 1)) + 5" +9°) + (2"y - gy?’)
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With scaling of the variables one can think of H = Hy + eHy, where eH; = (2°y — gy?’)

Then if e= 0

1 1
H(z, y, pa, py) = Holz, ¥, Do, py) = = (0% + 1) + = (2° + ) = Ha(z, pa) + Hy(y, py)

2 2
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where Ho(x, p) = 50z + 5%, Hy(y, py) = 5oy + 50
The potential energy
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is shaped like a distorted bowl. In polar coordinates

1 1
V(r, )= 57“2 — 57'3 sin(30)

The Hamiltonian is independent of time, so energy is conserved.
Lo, o
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and the motion is confined to lie inside the contour £ = V' (z, y). There are many different
trajectories one may look at, but the best way to understand the dynamics is to look at
the Poincaré maps with surface of section x = 0. On this section E > p2/2 +V(0,y). If
there is an integral besides E the successive intersections of a trajectory with the surface
of section will fall on a closed curve.

Numerical results show that for lower energies (E = = = € small ) most of the

12
trajectories execute regular motion. For higher energies there are large chaotic regions.



