Section 1. Classical Dynamics

Section 1.4 Integrable Systems and Action Angle variables

If an n degree of freedom system has n independent conserved quantities then the
solution to the problem can be reduced to quadratures. Such a system is said to be
Integrable. Typically the phase space of integrable systems is divided up into regions of
similar behaviour separated by solutions asymptotic to the unstable critical points. Take
the nonlinear pendulum. The separatrix divides the phase space into three regions.
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For any system that is reducible to quadratures a set of phase space coordinates can
be chosen for each subregion of the phase space in which the momenta is a constant
of the motion. For a one degree of freedom system the momenta is a function of the
Hamiltonian. If further the phase space is bounded, as in region 2 for the pendulum,
generalized coordinates can be taken as angles and the conjugate momenta are called
actions.

Action angle variables can be generated by F, generating functions.

The idea of Action angle variables in bounded regions is to find new canonical
coordinates (0, I) for which

e a) Each phase curve is labeled uniquely by I, which is constant along a phase curve.
e b) Each point on a phase curve is labeled by a single valued function 6.

So for a One degree of freedom system we require H(I), that is the Hamiltonian is a
function of I only. Take the example of the nonlinear pendulum.
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H= 5t V(q) where V(g)=wicosg

We require new canonical variables (8, I) such that

88—2[:0’ = H() :>9':8—H w(I) = constant

oI
This means that § = w(I)t + 6(0).
If we choose 6 such that it increases by 27 in each period of the motion the time
period will be T' = Wi), where w([) is the angular frequency.
The new phase space (6, I) is cylindrical. S x R.

q(@+2m, I)=¢q(0, I) and p@+2nr,I)=pb,I)



Although the generating function is an F, generating function, so that it is a function
of the old positions and the new momenta, it is usually denoted as S(g, I). As for an F
generating function
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Substituting into the Hamiltonian gives
oS
H(q, 6_q) = constant

which is called the Hamiltonian Jacobi equation and it defines S. Here

05 _ L AHD V@) = S=+ / ' VEED ~Vi{g)dq = + / " pda

Since we assume that [ is a constant of the motion it is constant in this integral. Effec-
tively we integrate along a phase curve. this means that there is a geometrical interpre-
tation to S.
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Here rather than specify 6 we will find I first, using area preservation.

/ dgdp = / dfdI = constant
R R

because canonical transformations preserve phase space area, or because the Jacobian of
the transformation is 1. Take the area in the transformed variables, where, by design,
I = a constant.

/ dodl =1 / df = 2wl for the area inside a phase curve.

p H= constant -> | = constant
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From this we can work out I(H).




To work out I(H) use the fact that canonical transformations preserve phase space

area and also the reflection symmetry of the Hamiltonian.
H= constant -> | = constant D
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q2 q2
2r] = / dqdp = 2/ pdq = 2/ V2(H —V(q))dg
R q1 a1

where ¢; and ¢y are the intercepts with the ¢ axis and we have used the reflection sym-

metry.
So that | e
= —/ V2(H —V(q))dq which defines I(H).
d q
In the case where V(q) = —wZ cos ¢, which is an even function

2 q0
= —/ \/Q(H-i—wg cosq)dg where H + wicosgy =0
0

The solutions are elliptic functions, both inside and outside the separatrix.
On the separatrix gy = 7 and H = w?.
Inside the separatrix gy < 7 and H < w?.
Outside the separatrix go = 7 and H > wj.

Elliptic Integrals.
The complete elliptic integral of the first kind is

™ k) B / do B /1 dv
0o V1—k2sin?¢  Jo /(1 —02)(1— k%?)
where v = sin ¢ so that dv = cos ¢de.
The complete elliptic integral of the second kind is

/ \/1 — k2sin? ¢pdo = / Y 11__k;

Using half angle formulas,cos ¢ = 1 — 2sin? 1, we can write I(H) outside as

/ \/ H—|—w0—2w0sm \/ H—!—wo/ /1 sm

H 2
where k? = 7( +2w0)
2wy
So that -_ )
I(H) = el <g, E) Outside the separatrix
7r



Inside the separatrix £ < 1 and we make the substitution u = sin ¢ which gives

du
du = cos ¢do or dop = .
pdo or 40 =0
This means that

/qo \/T‘Mﬁ /_ qu

Now let v = % and recall that H + w3 cos gy = 0 which means that sin®(%) = k%. Then

after some rearrangement

I(H) = S (E (g, k) - (1-K)F (g, k)) Inside the separatrix
T
where 0 < k < 1.
. : dH
Now the nonlinear frequency is w(H) = =T

1 o . .
w(H) = 1 7w { (5 k <1 inside separatrix. ]

T AT g b k > 1 outside separatrix.
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Since . )

™ ™ 1 1.3
F(5ik)~5 1+ (5) #+(55) *

2 2| T (2) * <2.4) *

Note that as £ — 0 that is as we move towards the origin w(H) — wp.
Also as k — oo then w(H) — kwp.
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co(H) The nonlinear frequency
as a function of energy H
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The new angle can be found in terms of incomplete elliptic integrals. Using the fact

that@— — andS / \/2 (H + wd cos q)dg
g— dwokE (qﬁ, %) for £ >1
T 4w (E(¢: k) — (1 —Kk*)F (¢;k)) fork <1

where £ sin ¢ = sin().
The inverse elliptic functions can be treated a bit like sin and cos. If
sin 4

k

=F(¢:k) then sn(u,k)=sing=

which defines ¢(6, I). But the dependence is quite complicated because k(I).
The momentum p(é, I), dependence on the new variables is then

2F (¢;
p = £2wpy [ k? — sin2(g) = QwO\/k2 — k%sn? (M, k))
™

From these formulas it is easy to derive the solutions for (g, p) as functions of time.
This is because of the simple dependence that (6, I) have on time.

0(t) = w(I)(t —to), where w(I)= #C;(:k), and I(t) = I constant.
So that
g = 2arcsin (ksn(wo(t — to), k)) , p = 2woken(wo(t—to), k), where cn(z, k) = /1 — sn?(z, k)

and k(I) is a constant of the motion.

Integrability and Action Angle variables
In terms of action angle variables the conditions for integrability are easy to under-
stand.

e Complete Integrability, of an n degree of freedom system, requires n linearly
independent constants of the motion, (1) for k = 1---n, that satisfy the condition
that the Poisson bracket of any two is zero, {Iy, I;} =0 .

If an n degree of freedom system has n linearly independent constants of the motion
then we can transform to action angle variables where the new linearly independent
constants are the new actions, (Iy) for k = 1---n, if and only if {I, I,} = 0.

Note that the (/) must be linearly independent because otherwise they will not be
able to represent the configuration space, which is n dimensional. For the transformation
to be canonical we also require that {Iy, I,} = 0.

Example Take a Hamiltonian that can be separated into linear oscillators.

2 2
p q p q
H=Y) Hi(qi,pi,t)=(51+w%’51)+<22+ 322)+ .
%

2 2
Then H,; = (% +w§%’) are constants of the motion and could be taken as the new
momenta, I; = H;.



