Section 1. Classical Dynamics

Section 1.5 Canonical Perturbation Theory.

Closed form solutions to Hamiltonian systems can be found only rarely. However
some systems differ from a solvable system by the addition of a small effect. The goal
of perturbation theory is to relate aspects of the motion of a not completely integrable
system to those of a nearby integrable system. In effect we will try to find action angle
variables for the new system. In so doing we will find that we can use perturbation theory
to predict where large resonances regions are located and even to estimate their widths.

I will mainly consider two types of systems:

1% Degree of Freedom systems, which are easier to grasp but for which we will need
time dependent Generating functions, and
2 Degree of Freedom systems, whose phase space is 4D.

Perturbation theory for 1% Degree of Freedom systems
Suppose that

H(Qa D, t) = HO(Qa p) + eHl(Qa D, t) + 62H2(Qa b, t) + -

where since Hy(q, p) is a 1 degree of freedom system action angle variables can be found
so that
Ho(q, p) = Ho(I) for some I

Then in terms of these variables we have
H,1,t)=HyI)+eH(0,1,t)+eHy(0,1,1)+

Since the Fy(0, J, t) generating function can generate the identity transformation we will
use it to generate a near identity transformation. That is it will generate a canonical
transformation that is the identity for e = 0. So assuming F5 as a series in €

Fy0, J,t) =J0+€eG(0, J, t) =J0+e(G1(0, J, t) +eGa(0, J, t)+---)
This gives the following transformation to (¢, J)
I=2 = J4 %1 4 20 ...

QS BFQ 9+€8G1 +€28Gz +

and the new Hamiltonian

0F,

K(d): J, t) = H()(I(QS, J, t))+6H1(0(¢7 J, t)’ I(¢7 J, t)? )+62H2+ = ot

6(¢, J, 1), J, 1)

Now for the moment we will think of this as a function of (0, J, t), where I = J + e%—(;
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HZ(O, 1(0, J, t), t) = HZ(Q, J, t)

where
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Putting this all together WlthIZJ-I-e%:J-i-EW—FG W—i—---thls becomes
dH, 0G,  0G, ¢ 9*H, 0G| 2
K = H =0 L T2 il
0(J)+eaI (J)(ae eyt )+2 ETE (J) 50+ +
0H oG
2 (2201 bl R
+eH (0, J, t) +e€ (8[ 0, J, 1) 50 + >+
+e2Hy(0, J, t) + -
0G;  ,0G,
+6W+6 W-i_
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The idea is then to choose GG; to remove as many oscillating terms as possible. If it is
possible to remove all the § and ¢ dependence by choosing appropriate GG; then the final
Hamiltonian is a function only of the new action, K(J). So the final Hamiltonian is
integrable.

Take a simple example, say
H(0, I) = Hy(I)+ € (cos(f) + Isint) so that Hq(6, I, t) = cos(f) + I'sint

Then choose G;(f, J, t) to remove the terms of order i in e.
So choose G (6, J, t)) such that
0H, , .. 0G, 0G,
or g Tt
0H, , . 0G, 0G,
ar a0 T o

=0

+ cos(f) + Jsint =0

So that in(6) 3
sin H,
_ wh — 20
o(J) + Jcost erew(J) oI (J)#0

Then choose G(, J, t) to remove any oscillating terms or order €, that is set

G (0, J, ) =

=0

OHy 0G, | 10°Hy (9Gy\", OH0G: , 0G;
oI 00 291> \ 09 oI 00 " ot

Note here Hy = 0.
If this can be done to all orders then the new Hamiltonian is only a function of J,

K(J), and the system is integrable.



Here if H,(#, I) = cos(f) only we would be able to remove all the oscillating terms
to all orders, provided w(J) # 0 for any J. So say Hy(I) = I?/2 then w(I) = I, which if
it is assumed to be positive will never equal zero.

Note that, even after removing all the oscillating terms, the resulting Hamiltonian
may not simply be Hy(J). For instance here the order €? term

182H, (0G\* 1 ,
5 8[20 (a—ol) = &' (/)(1 + cos(26))

has a non oscillating part. w'(J)/4 is not a function of 6.
To order € the new Hamiltonian is

K(J) = Ho(J) + eﬁw'(J).

which is a function of J only. To this order J = I + ecw"(sg is the approximate action for
the system.

Also if Hy(0, I) = Isint we would be able to remove the oscillating terms at all
orders.

However if both terms are included we get problems with small divisors further down
the track.

Small Divisors
To see the problem of small divisors consider Hy (0, I, t) = cos(f) + Isint, then as
before the oscillating terms of order € can be removed by a near identity transform with

G, = —S;n(ffo)) + J cost.

The procedure is recursive, so at order €2 we must choose G5 to remove the oscillating
terms at this order, which since H, = 0 here are simply

10°H, (8G1)2+ 0H, 0G1

2 012 \ 99 ol 96
Or
1 0w 0G1\*> OH,, _ 0G, W'(J) . sin(t)sin(f)
591 )(ae> *r VB0 T 22 T
+%(1 + cos(26)) — 2w1(J) (cos(6 +t) + cos(6 — 1))

To remove the oscillating terms set

GGQ 8G2 . w'(J) 1
w(J) 5w o = “ 12 ()) cos(260) + 20(J) (cos(f +t) 4 cos(f — t))
Solving for G4 gives
W) sin(f + t) sin( — t)
@ = =10 ) e T m I r e )

Now we see the problem of small divisors, for this is only possible if w(J) # +1. If it
is the case that w(J) # £1 then we can proceed to solve for G5. However this involves
further small divisors because of terms of the form sin(f & 2t), which we can only remove
if w(J) # £2, and terms of the form sin(20 +t), which we can only remove if 2w(J) # +1
etc.

The problem is reminiscent of resonances in forced linear systems and is hard to avoid
in forced nonlinear systems.



It is instructive, at this point, to consider which Hamiltonians we can so far prove to
be integrable.

For instance a time dependent 1 degree of freedom Hamiltonian system, where the
time dependence is a total derivative is integrable. This follows from the fact that
H' = H+%Z(t) is an alternative Hamiltonian for the system. But one could also imagine

OF _ dF

a canonical transformation where 5~ = %=(t). So for instance

H(q, p, t) = Ho(q, p) + h(t) is an integrable system

Also if all the position and time dependence is a function of one variable, say (wt+20)
in a 1% d.o.f system or say (w16; +wsbs) in a 2 d.o.f system, then the system is integrable.
This follows from the fact that you can always transform to an integrable system via new
variables, ¢ = (wt + Q0) or ¢ = (w161 + webs). So

H(q, p, t) = Ho(I)+Hi(0—at, I) and H(01, 0o, I, Is) = Ho(I1, I5)+H,(01—aby, I, ),
where « is a constant, are integrable.

The Parametrically Excited Nonlinear Pendulum, is not integrable.

H(¢,p, t) = %2 — wj(1 + ecos(wt)) cos ¢ = Ho(e, p) + eHi (4, p, t)

gives

2

Hy(¢, p) = %+w§ cos¢ and  Hy(¢, p, t) = —ws cos(wt) cos ¢ = —%g(cos(wt+¢)+cos(wt—¢))

Now we know that for ¢ = 0 the nonlinear frequency inside the separatrix is given by

2

TWo o wy+ Hy

)= _"“0 here k2= 010
w([) 2F(Z:K) where 207

So, from the form of H; we might expect to have problems with a perturbation scheme

if is a rational. Consider

w(I)

w 1 T 3T
— == = F(=k)=——uw
w() 3 (3i%) 0
from which we can solve for £* and hence for Hy = H;.
To see this suppose we are on Hy, = Hj, consider the point on the momentum axis,
whose position is given by py = \/2(H} + wi) = 2wok*, then the Poincare Map should
give just three points, that is a period-3 orbit. (This is worth trying yourself.) Here are

some of the values where w is taken as 1 and wy = %:

wI)=3 = po=0.652276
wlI)=%7 = po=0.79412
w(l) = % = po = 0.494089
w(l) = ;7 = o= 0.751941
wI)=% = po=0.813806

Now if you start at the same points, but set € # 0, but small, you will often find that
island resonances have formed. The actual resonances depend on the actual perturbation
and we need action angle variables to calculate them..
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Resonances for the Parametrically Excited Nonlinear Pendulum
Using action angle variables, as described in the last section of the notes, for inside
the separatrix

1= (5 (58) -0 wr (38). =T L

where k = 1/ =5 H°+w° and ¢(6@, I) and p(@, I) are know functions of (, I), we can rewrite
the Hamiltonlan as

H,I,t)=Hy(I)+eH (0, 1,t) where Hy(I) is given above

H, (0, I,t) =w?cos(wt) | 1 — 2k*sn? w k
(, ’) 0 3
7

Now the elliptic function (sn) can be expanded as a fourier series in 6.

Then

2F\ 2 ] e

ksn <T> 7 r;) % sin((2m +1)0)  where g=e (39
So we can expand H; as a series in terms of the form (cos(wt — 2m#) + cos(wt + 2mb))
form=0,1, 2, ....

Then
10, I, 1) Z Vin(I) (cos(wt — 2ml) + cos(wt + 2mb))
m=0,1, -
where L4 B R
N g q
Vo= <2+ P ((1—c7)2+ =gy ))
4 2,2 2—2 2—3
‘/vl:_w();— (— q7+ 7q — +...>
F 1-q9 (1-901-¢)
42T 2q? 27>
Vo= — 0 ( — + — _|_)
’ 2o \(1-9(1-¢) (1-901-7¢)

Unfortunately all the terms are oscillating so we would like to remove them all.
But this cannot be done for all values of I because of small divisors. In order to
remove the oscillating terms at order € we need to choose G such that

0H, , .. 0G, I 0G1

o1 Vg T F g =0

where H; is as above. If this can be done, at least for some I, we can go to the order
€2 terms and remove the the § and ¢ dependence in these terms using Gs, etc.

What we will find is that for some values of I we cannot solve for some G; due to
the problem of small divisors. However there are values of I, specifically where % is
sufficiently irrational, where, for € small enough, this can be done and this is the subject
of the KAM theorem.



First Order Resonances for the Nonlinear Pendulum.
Using the Fourier series representation of H; we let

G, = Z (Gim—(J) sin(wt — 2mb) + Gy (J) sin(wt + 2mb))  for some Gy (J), G (J)

m=0,1, -
Fhen OH, . 0Gy G
0 1 1
o1 a0 T G
= ((w = 2mw(J))G1m—(J) cos(wt — 2mb) + (w + 2mw(J))G1m+(J) cos(wt + 2mb))
m=0,1, -

So if we choose

Vin(J)
(w —2mw(J))

Vin(J)

Glm—(J) = - m

and G1m+(<]) = —

then to order €2
K =H(J)+0()

and we can proceed to the next level.
However there are problems with the asymptotic series if (w + 2mw(J)) = 0 and
even if (w £ 2mw(J)) ~ 0. In fact there are first order resonances if
w(I)

1
— = iQ— these are the first order resonance conditions.
w m

If # = iﬁ we cannot remove the oscillating terms at first order. In fact the integral
I given by the resonance condition is resonant with the perturbation.

To see what happens at (w+2mw(J)) &~ 0 imagine we have removed all the resonances
except the one at m = 1, that is at (w £ 2w(J)) &~ 0 and that J is approximately given
by (w % 2w(J)) = 0. Then the Hamiltonian to first order in € is

K = Hy(J) + €Vi(J) cos(wt — 260) + 0(€?)

Concentrating on the order e terms, it is useful to transform to a rotating frame. So let

t
=0 - % and use an Fy(J', ) generating function

>0 IF, oF,
J = 20 and = 57
= EZIW—%):ﬁJZf
and the new Hamiltonian is
_ F:
K=K+ % =K - “’7‘]
K = Ho(7) = “L 4+ eV (J) cos(246) + 0(e2)

2



This is only valid away from all the other resonances, so for J = J,, where .J; is given
by (w — 2w(.Jp)) = 0. So assume that

1
J=Jy+VeAJ where w(Jo) ==
w 2
Then since
0H 0*H, 3
Hy(J) = Ho(Jo) + Ve 7+ (J0) AT + 55 J;(Jo)AJ? +0(h)
7 LL)JO 8H0 82 9 %
But %(Jo) w(Jp) :g so the order (/e terms vanish. Also the first two terms
Hy(Jo) — ¥ are constant. So setting K =K — Hy(Jo) + wJo gives
_ 102
K=¢ (iaaio (Jo)AJ? + Vi (Jo) cos(2¢)> + 0(6%)

which is essentially the nonlinear pendulum. The only slight unknown is that the cos
term is a function of (2¢) as opposed to 1. The equations of motion are

82H0
a5

Y = AJ  AJ = 2€Vi(Jy) sin(21))

If Vi(Jy) < 0 the origin is a center and the separatrix is given by K = —eV].
The approximate width of the separatrix is order /€.

Vi(Jo)

57 ()

AJ =4

RS ——
1 g

-0.5

-
(e

In the Poincare Map of the original system this becomes wrapped around the ori-
gin. However the order € terms destroy the separatrix so that two regular islands are
surrounded by a chaotic sea.



In the full time dependent system the resonances rotate in time. This is because
P =0— %t, so that the critical point 1) = 1)y moves in time as 0 = %t + 9. After two
periods, t = 2 X 27“ the angle 0 returns.

Nonlinear Pendulum epsilon=0.02 omega=0.545
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Other first order resonances.
The analysis of other first order resonances is very similar. Once again assume that
J & Jp0, where W = ﬁ Let

= 10%H,
J = Jpo +VeAT, andK =e¢ (5 BB

AJ2 + Vo (Jomo) cos(Qmw)) + 0(6%)

The result is that there are now 4m critical points, 2m saddles and 2m centers. This
period-2m resonance results in a period-2m island chain.

———
<

HQE
N@D

I
|
—t

Second Order Resonances

Suppose [ is not close to any first order resonances. That is I is not close to I,,,9, where
@ = % Then we can use (7 to remove all the oscillating terms in H;. Here this
means removing all of H;. However, even if the orginal Hamiltonian does not constain

terms at order €2, the generating function introduces them! So the new Hamiltonian is

10w(J) (0G1\*> 0H, 8G,
K = H, 2= ’
o)) + e (2 A (89> + o 89>+0(e)

(—2mG1p_ (J) cos(wt — 2ml) + 2mG 1,4 (J) cos(wt + 2m0))>

2

X ( (—2mG1m—(J) cos(wt — 2mB) + 2mG1pmy (J) cos(wt + 2m0))>
m=0,1,

Multiplying out and rewriting gives rise to terms of the form

cos(wt + 2£,0) cos(wt + 20,0) = = (cos(2wt + 2(41 + £2)0) + cos(2(¢1 — £2)0))

N =

The first term introduces new resonances at

I 2
_w( ) = :|:2—€ = 7 these are the second order resonance conditions.
w



The second order resonances,occurring at @ = i% = %, can be investigated in a
similar manner, via a rotating frame coordinate ¢ = 6 — “~.

They will be period-¢, which means all the odd periods are second order. Because
they occur at order €? their width is order ¢ (the width of the first order resonances is

order 1/€). So you need higher values of € to see them.

Nonlinear Pendulum epsilon=0.1 omega = 1.15
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Higher order resonances
Third order resonances occur when
general

w(I)

3
—7 2
w

=+ and have width on the order of e2. In

w(I n n
nth order resonances occur at —) = :t2_£ and have width ez.
w

~—~~

Despite the presence of resonances, for e small, the overall behaviour can appear
fairly regular away from the main separatrix. This is because most of the tori with @
irrational persist and their existence limits the extent of the chaos. As € increases the
width of the resonances increases and so the integrable tori between them are destroyed.

In fact this idea gives rise to a rather crude estimate for global chaos.



Resonances emerging from the origin.
.. I
The resonance condition; wd) for an order n resonance, may not always have

w 2m’
a solution. Since

w(l) <wp there is some [ if and only if% < wy.

For instance the period-2 resonance exists if wg > 3. One approach to analysing a system
is to fix w = 1 (you can always scale time). Then the period-2 resonance exists for wy > %,
the period-1 exists for wy > letc.

It is quite interesting to see it emerge. Two bifurcations take place to the Poincare
Map. The stable center at the origin undergoes a pitchfork bifurcation to an unstable
saddle. Then the saddle undergoes a second pitchfork bifurcation to a stable center.

w_0=0.475 epsilon=0.05 w_0=0.5 epsilon=0.05

i | | sedde , (l center

center
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Perturbation Theory for 2 d.o.f. systems.

The method used for m d.o.f. systems is similar to that for 1% d.o.f. systems. We
assume that the unperturbed Hamiltonian is integrable and so a function of the actions
only. Then using a near identity generating function we try to remove all the 6 dependent
terms. So assume that

H(ela 927 -lla -[2) = -HO(-Ila 12) + €H1(017 92, -lla 12) +€2H2 + -

and look for a near identity generating function that transforms the sustem to action
angle variables.

F2(91a 027 J17 JQ) = J191 + J202 + EG(gla 02, Jla JQ)

where G = G +€Gy+ +--. Then

oG oG
I_J+€8—0 qﬁi—@i—i—eaJi

and the new Hamiltonian is simply the old Hamiltonian written as a function of the new
variables:

OH G, OH G,
K (01, 05, J1, Jo) = Ho(J1, J2) + € ( 8[10 (J1, Jo) 8011 oL, 0(J1, Jo)—— 90, + H,(6;, J))
62H0(J 1 (2 2+62H0(J 1 (26 C L, O Ho (1, 201G
arz \b 7\ a6, a2\ 7\ o6, dL0L, """ " 90, 06,

OH,8G: OH,0G, 0HydG, OH,dGs
2
H
(8[1 06, oI, 06, T oL, 096, oI, 08, T 2) *

Once again we use G; to remove any 6; dependent terms at order ¢, then (G5 to remove
any 0; dependent terms at order €? etc. To do this systematically expand H; as Fourier
series in 6;, then say if

01, I Z an n2 COS TL191 - n292)

ni1,n2

we choose G =) G1yy,n, such that

0H, 0G1.m1 m 6H 0G1 1y m
aIO(J1, Jo) 61011 : 8120(‘]15 J2) 5921 %+ Vagno (Ji) cos(nify — nafly) = 0
So let
Vo (i) . 0H,
e = — ’ 01 — no0 h i(Jh, J. Ji, J.
Gl, 1,n2 nlwl(Ji) — n2w2(Ji) sm(nl 1 No 2) whnere (.d( 1 2) 6[ ( 1 2)
This is only possible if the denominator is nonzero.
H, H
The first order resonance condition is nl%(ﬁ, Jo) — ng%(Jl, J2) =0
1 2

Or nywi(J;) — nowe(J;) = 0. If J; are such that this is nonzero the term can be removed.



Take as an example the following Hamiltonian

3
H=1 +1,—I? =301, + I? + al, I, cos(20; — 20,) + BI, I} cos(26, — 365)

for o and 8 small. Then there will be first order resonances when

8H, OH
an:a—I; =1-2I, -3L=1-3L+2, = I, =5,
dHy, .OH
29— =32 =201-2-3L)=31-3L+2L) =5I,=1+12]
oI, ~ " ol

Investigaton of a general resonance.
Suppose that a near identity generating function has been used to remove all oscil-
lating terms at order € except one:

H = Ho(JZ) + 6Vn1,n2(Ji) cos(n101 — ’I’L202)

Then moving to rotating coordinates: ; = 6; — @02 19 = By using the generating
n
function Fy(0;, L;) = L1(6, — 2—302) + Ly6,, gives new momenta L;;

J=L, and Jy=1L,— 2L,

n

Then if we let H()(Ll, L2 - z—? 1) = ﬁO(Lla Lg) and V(Ll, L2 - Z_?Ll) = V(Ll, L2) the
new Hamiltonian is B B
H = H()(Ll, Lg) + GV(Ll, LQ) Cos(n1¢1)

Since the new Hamiltonian is not a function of ¢/, the new momentum L is a constant
of the motion. Now at resonance L; = Jiy and L, is a constant, so that Jy, is given by

0H
nlwl(Jma Ly — e JIO) - n2w2(e]10, Ly — e JlO) =0 where wz‘(Jh J2) = 0
1 1 an

However it would be useful to rewrite this in terms of H. Consider

8ﬁ0 . 8H0 6J1 8H0 6J2 aHO 8H0 ( nz) o

oL, _ 07, 0L, f 95, 0L, _ oL o

So at Z%(Jo, Ly) =0
o at resonance aLl( 105 L2)

Since we are interested in the behaviour near resonance let L1 = Jjg+ 1/€AL;. Then
useing Taylor series

_ O0H, € 0°H, _
H = HO(J107 L2)+\/E—O(J10, ,LQ)AL+——2()(J10, LQ)AL%-FGV(JH), Lg) COS(TL11/))+' ..
€ 82ﬁ0

which becomes H = Hy(J1o, Lo)+ =

QW(JIO’ LQ)AL% +€‘_/(J10, Lg) COS(Tll’l/)) —+.--
1

AL

which is the nonlinear pendulum with n; eyes!

N>
J =

g =
=
=

-3,
-T



A single resonance Hamiltonian is integrable, as there are two integrals of the motion
H and L, but a second resonance is enough to destroy the integrability.
Consider

3
H = Hy(L1, L) + al, Iy cos(20; — 20,) + B1,1} cos(26;, — 305)

the best we can do is stay away from the resonances, assuming that o and [ are small.
But this will be hard to do for all resonances to all orders.First order resonances occur at
w1 —wo = 0 and 2w — 3ws = 0, but second order will occur at 4w; — bws = 0 and we = 0,
third order will occur at 6w; — 7wy = 0, 6w; — 8wy = 0 and 2w, — 4ws = 0 etc. There
are an infinite numer of resonance conditions. However the higher order resonances will
have reduced width: a2, 82, for order n. So it is just possible that we could stay away
from all the resonances for a and 8 small. This is the subject of the KAM theorem

Canonical Perturbations via Lie transforms.
The evolution of a system under any Hamiltonian generates a continuous family of
canonical transformations. Consider the Hamiltonian

W(r, 0, pr, pp:T) = pg where the evolution is in the variable 7.

Since Hamilton’s equations of motion are

LW _
=5 =

) . d
0, #=1, p,=0, pg=0, where fz%

= r=r, 0=0+7 p=p, po=p)
The angular momentum is the generator of a rotation in 6.
Or consider the Hamiltonian

W(J), Y, 2, Pz, pya pz) = xpy — YDz, where

jj:_ya :l]:.T, ZZO, pl':_py: py:pma pz:()

This gives a rotation in z, y about the z axis and in p,, p,.
To use this suppose

2 2
D p a b

then using the Hamiltonian W we can effect a rotation

x\ [ cosT —sinT x' Py \ _ [ cOST —sinT v,
y )\ sinT cosT Yy’ py, /] \ sinT cosT jo

Here the trick is to choose 7 = T then
( Pz ) 1 ( 1 1 > ( p!c )
Py 2 1 1 ply

()=l )7
@)

So that the final Hamiltonian has the form
2 2

'y = (p3)”

H(', o, v, ) = +a(z")? + b(y')*

which is in separated form and therefore integrable.



In Canonical perturbation theory the change in the canonical variables is also a
continuous change. The variable of change is €. If ¢ = 0 then [ = J and # = ¢. As a
function f evolves under € via some Hamiltonian W

d
d_i ={f, W} =Lwf The Lie derivative operator of f

Similarily
2 . df
Ly f={{f, W}, ,W} which is—5

etc. Now take a Taylor series
df

Flr+e) = flr)+eo () +

ed*f

CEL () = F )+ eLw f()+ ST f ()4 = e [ ()

This means that W generates a caonical transform via the operator e““". The new
variables are given by

HI — eELwH’ q — eELWqI, p — eeprI

Now suppose that
H = H() + €H1 with Ho(IZ)

Then the evolved Hamiltonian is
L2
H' =™ H = e (Hy + eH,) = Hy + e(Lyw Hy + H;) + € (TWHO + LWH1> SEERE

The attraction of this method is that it is easy to find a general expression for the
perturbation at any order.

Now suppose we wish to remove the oscillating terms at order €. Separate the oscil-
lating and nonoscillating parts. So if the average of Hy is (H;)

let H,=(H,)+ H, and choose W so that Ly Hy+ H; =0

So if for instance H1 = %(Ila IQ)+‘/1(11, 12) COS(nlel—ngeg) s for which <H1> = %(Ila IQ),
we choose W such that
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Lwﬂo = {H(), W} = —Hl = —‘/1(]1, IQ) COS(TL101 — 71202).

To remove terms at all orders we require W itself to be a series in €. The result is
more complicated, however this is a good method for higher order calculations because
the higher order terms can be generated systematically.



