Section 1. Classical Dynamics

Section 1.7 Twist Maps.

Maps may arise naturally as approximations to kicked systems or they may be con-
structed as Poicare Maps of continuous systems.

Fermi acceleration, which models cosmic ray acceleration where charged particles
are accelerated by collisions with magnetic field structures, is modeled by a map. The
resulting dynamics is that of a ball bouncing between a fixed and oscillating wall. The
simplest version of this allows the oscillating wall to impart momentum to the ball,
according to the balls velocity, without the wall changing it’s position in space.

So let u, be the normalized velocity and v, be the phase of the moving ball, just
before the nth collision of the ball with the fixed wall. then
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where F(1,,) is the velocity impulse given to the ball.
There are a number of models for the velocity impulse,

Fi)=vy -1 sawtooth wall.

F() = sin() sinusoidal momentum transfer

In very simple cases we can construct the map from a continuous system. Consider
the integrable Hamiltonian system
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Take a Poincare map with surface of section 6, = constant, that is
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which is equivalent to taking a strobe map of the (6, I;) space.
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So if 0, = 6, (t,)
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The ratio of frequencies 2! = w(l;) s called the winding number.
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w141 . . The map is just a finite set of points.
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As the flow evolves it does so canonically. So that
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The first part of the generating function generates the identity.
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Perturbed twist maps that evolve canonically have a specific form. Consider a general
perturbation of the simple twist map:
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For this to be generated by an Fy(8,, I,,1) generating function we require
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Even quite simple perturbations of this, perturbed twist maps, often have chaotic
solutions. Even the radial twist map

Br = O + 27w0(y1)
In+1 - In + ef(on)

or it’s simple example the Standard Map

Opni1 =0, + I,11 (mod2m)
I = I, + K sinf,

displays a whole range of resonance behavior. The Standard Map has received a lot of
attention, partly because it provides an approximation to various other maps, such as
the Fermi map and the separatrix map.

Critical points of Maps.
For a given two dimensional map
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The Tangent map or the linearized system.
The linearization about critical points of a map is often called the tangent map.
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Since the map is a canonical transformation det(T") = 1.
Now let t = trace(T'), then the eigenvalues of T are given by

t 12 Ais complex if —2<t<?2
)\_§i Z_l = Aisrealif t< —2 or t>2

If )\ is complex we can transform to normal form

/ o ! _t _ t2
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(The transform matrix P such that ( ?7 ) =P ( i" ) is P = (Im(e)Re(e)), for

eigenvector e.)

In normal form variables the linearized map is simply a rotation. We can let o = cos ¢
and 3 = sin ¢ because o + 32 = 1, for some ¢. So the solutions lie on circles.
Transforming back the solutions in (6, I,,) space lie on ellipses.
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If A is real t < —2 or ¢t > 2 then the two eigenvalues A\; and A\, have product 1. So
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. This leads to saddle like behavior, if |A{| > 1, then |X\y| < 1.
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If t = 2 the map is the identity.
If t = —2 all points are period-2.



Birkhoff’s Fixed Point Theorem
Take an area preserving map and an orbit with a rational winding number.

So that w = —. Then if
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That is all points on the orbit C .
with w = &, are
fixed points (critical points)
of the map TM.
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Now suppose that w < 2 " C_, just inside C. Then

™ ( i" ) = ( On +[2M7rw ) where 2Mnw < 20N

so that points on C_ rotate clockwise.
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Similarly suppose that w > i on (', so that points on C'; rotate anticlockwise.

Now perturb the map to 7,

The relative twists will not be changed by 7M. Consider the points on a radial line,
there will be outer points that rotate clockwise and inner points that rotate anticlockwise.
So there must, by continuity, be a point on each radial line that does not rotate. That
is it stays on the radial line. So under the map T it moves either radially outwards or
radially inwards.
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enclose the
same area.

Since this is true for all radial lines the points that do not rotate form a closed curve R,.
Now consider the two curves R, and it’s iterate T R,. By area preservation they
must cross in an even number of points.



Say z( is a fixed point of T, then so is (") = T,z(®), since

TeMx(O) =20 = TeMm(l) — T€M+ll‘(0) — TGTGM.CE(O) — T€x(0) — 21
Similarly 2(™ is a fixed point for m =0, 1,...(m — 1).

So there are 2kM fixed points of TM.

Further the direction of the flow implies that their type alternates between center and
saddle.

Moser’s KAM Theorem for Twist Maps
Suppose a twist map is j times differentiable and that
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so that the map doesn’t simply shift points vertically.
Then if
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all rotationally invariant circles with winding number w satisfying
|mw —n| > Km™ Vn,me Z/0 and some o« >1

persist.
The Diophantine condition implies that w is poorly approximated by a rational. This
condition is based on representing irrational numbers by continued fractions.



