Section 1. Classical Dynamics

Section 1.8 The Standard Map.

The Standard Map, which has been analyzed extensively, has played an important
role in classical and quantum chaos. It can be derived directly from a periodically kicked
system; the kicked rotor. The Hamiltonian is
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Soif At =1 and (6,, I,) = (0(t =n), I(t =n))

H = I is a constant of the motion. = =1 = #=1It+ 6,.

0n+1 = Hn + I’n+1 (mOd(27T))
I,.,=1,— Ksiné,

The Standard Map can also be derived as an approximate map for the solutions to the
nonlinear pendulum near the separatrix. It has played an important part in understand-
ing the chaos near separatrices.

If K =0 then I,,.; = I, and the € rotates by an amount I at each iteration. So that,
like the unperturbed twist map

IfI=2nm = 0 is fixed.

If I=(2n—1)r = 6 isa line of period-2 points

Ifr= QmT” = # is a line of period-n points

If § is irrational the iterates of the map slowly cover the line/ = constant.

The Standard Map may be thought of a perturbation, proportional to K, of the
integrable twist map where K = 0.

Period-1, or fixed points, of the map can be found exactly.

0 =6+ 1 (mod(2m)) f=nr for n=0+1
I=1—Ksinf I'=2mm

The linearized matrix is

1—Kcosf 1 n
T = ( CKeosf 1 ) trace = 2 — K cosf =2 — K(-1)
So the period-1 points are stable if —2 < 2 — K(—1)" < 2.
If n is odd and K > 0 then 2 — K(—1)" > 2, so they are always unstable.
If n is even they are stable(centers) for K < 4 and unstable for K > 4.
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One period-2 orbit of the map x, = (7, 0), x; = (7, 7) can be found exactly and
its stability is straightforward to calculate. (There is a second whose position depends
on K.)

Since a period-2 orbit of a map x,1 = f(x,) is a critical point of the map f o f it is
a stable period-2 orbit if it is a stable critical point of f o f.

Now the linearized matrix in general is the Jacobian matrix or Df and for a map fof
it is Df o f evaluated at the critical point. However using the chain rule one can show
that this is Df(x;)Df(xy).-

So the stability of the period-2 orbit (m, 0), (7, 7), is determined from the product
of the linearized matrix at each point of the orbit.

1—Kcosm 1 1—KcosO 1 1-K?-K 2+ K
T(W’W)T(W’O)_< —Kcosm 1)( —K cos0 1)_< —K? 1+K)

The trace of the matrix is 2— K?, so that this period-2 orbit is stable if K2 < 4 = K < 2.
In between this period-2 orbit is a period-2 orbit which is always unstable.

To obtain a crude estimate of the width of the resonances we can use the representa-
tion of the Standard map in Hamiltonian form.
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and expand the delta function as a cosine series:

d(n) = Z d(n—m)=1+ QZCOS(Q’KC]TL)

m=—00 g=1

then
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H®,I)= 5 K cosf — 2K cosf Y cos(2mgn)

qg=1
I? >
H@®,I)= 5 Kcosf — K ) (cos(6 + 2mgn) + cos(§ — 2mgn))
qg=1
where n behaves like time if we assume that % < 1.
Now there are first order resonances at

0H,
—— +27q = I1=2
57 mq=0 = mq

with width AT = 4v/K. Surprisingly large! For K = 0.1 the width is AT = 1.264.



Resonance overlap.

A very crude estimate of the onset of global chaos can be found by considering when
the resonances overlap. For instance the two period-1 resonances overlap when AT = 27.
This implies that 4vVK =21 = K = (%)2 ~ 2.47. This is in fact a wild overestimate.

A better estimate can be obtained by considering overlap between the period-1’s and
the period-2’s. First remove all the first order resonances via a near identity generating
function.
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Then the new Hamiltonian is
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(0, J, n) = fo(J)sinf + Z (fg(J)sin(f + 2mgn) + f_,(J) sin(f — 2mgn))
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This removes all the first order resonances and introduces the following terms at second
order

0 K
- ( / ) = > fol(D) fm(J) (c0s(20 + 27 (£ + m)n) + cos(2m (£ — m)n))
£,m=—00
Now the period-2 at I = 7 arises as a consequence of the cos(20 — 27n) term. This
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Now fm(J)H% so that fufo1-m = (J+27rm)(‘,1727r(m+1)) Evaluated at J = 7 gives
1
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So that AJ = 4\/%2 = K+/2. This means that overlap between the period-1’s and
period-2’s occurs if
WK +V2K=1 = K~126

still an over estimate, but much closer to the value K ~ 1 suggested by our numerical
simulations.



Involutions of the Standard Map and finding Periodic orbits.
If a map I, is an involution then I? is the identity. The Standard Map is a product
of two involutions, I; and I,.

( i:: ) =01 ( ?: ) where
Hn _ _Hn Hn _ In _en
]1<In>_(ln—Ksin9n> ]2(In)_( I, )

Both I? and IZ2 are the identity.

The presence of these involutions implies certain symmetries of the map which sim-
plifies locating the period-m cycles.

For instance I; and I, have two fixed lines.
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I; is fixed on 0, = 0 and on 4, = 7.

I, is fixed on 6,, = %‘ and on 6, = #

You can prove that of the 2M symmetric cycles existing for w = % one iterate lies
on each of these lines.

This reduces the problem of finding period 2M symmetric cycles to a one dimensional
search on the symmetry lines of the involutions. So the positions of the symmetric
periodic orbits can be found numerically. To find any existing tori we need to understand
continued fractions.

Rational Approximates to Irrationals and Continued Fractions.
Any irrational can be represented uniquely by a continued fraction
1

w=ay+ ————— = [ao, a1, 0, a3, ...]
0+
a2+

1
a3+.1T
where the a; are positive integers ( a; > 1) for i > 1 and ao is a non negative integer(
ag 2 0)
Then ag is the integer part of w. Now let
1 1

then w; =a; +
w = ao as +

wp =

as+1
so that a; is the integer part of wy. Similarly define w,, recursively:

1 1
w, = ——  then w,=a,+
Wp—1 — Ap-—1 Ap+1 +

an+2+%

so that a, is the integer part of w;,.



If all the a,’s are nonzero w is an irrational. Rationals are obtained by truncating
the series, typically written as [ag, a1, ag, ag, ..., 00]. There is some non uniqueness in the
representation of the rationals. For instance

1 1 1
Z200,1,1,00] =0 —0+——=10,2
5= | o] +1+1+L0 + 550 = 02 o)

2 3 13
5=0.1,1 100, ==[0111100 or z==[0,23 4, o]

Or the irrational == (3,7, 15, 293, ...]

By terminating the infinite sequence at say a; we obtain the Rational Approximates
to an irrational.

N;
_. = [CLO; ai, Gz, ag, ..., 4g, OO]

M;
These form a unique sequence of fractions converging to w.
The Rational Approximates are also the best approximation in the following sense:

N N; N .
|w—M|>\w—Mi| for all i with M < M,

So for instance
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=10,1,1,1, 1, ..] ~ 0.618034
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has rational approximates %, , 2, g, ... but

5-1 3 5-1 N 5-1 N
|\/_2 —g|:0.018034< |\/_2 ~5 for any N. and <|\/_2 5 for any N

Now consider the Diophantine Condition in Moser’s version of the KAM theorem
for maps.
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It will be satisfied for some w if it is satisfied for all the rational approximates to w.
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By considering the fact that
Ny 1 . . .
W——=w—ay = T is small if a; is large
M, ar + PRSI
agz+-=
and in general
1 . . .
Wy — Qp = T is small if a,; is large
an+1 + an+2+%

you can show that Diophantine Conditions are satisfied by those irrationals with their
a;’s (at least) bounded above.



Further the Noble Numbers, which have continued fraction expansions that end in
1’s

w = [ag, a1, as,a3,..., 1, 1, 1, ...]  satisfy a Diophantine Condition with oo = 1.

The irrational worst approximated by rationals is the Golden mean
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This means that the torus that is most stable to perturbations, according to the KAM
Theorem, is that with winding number w = @

To locate the torus with w = @ we use it’s rational approximates:

1 2 3 5 8
-=100,1,1, 0], ==[0,1,1,1, 0], = =[0, 1, 1, 1, 1, 0], =, — ratios of the Fibonacci numbers.
2 3 5 8 13
and look for the corresponding M; cycles.

Recall that the actual position of the M; cycles in the standard map can be found
numerically by using the fact that the map is a product of involutions.
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The invariant tori are important because if they exist they bound the motion. For K
small, where a large number of invariant tori exist, the motion, be it chaotic or otherwise,
is confined to lie between invariant tori. As K is increased more KAM tori are destroyed.
Eventually the only invariant tori that remain are those with noble winding numbers.
The last torus to be destroyed is the one with winding number equal to the golden mean
w = @ Once all the KAM tori are destroyed global chaos sets in, restricted only by
islands existing about the stable M cycles.



Estimates for Global Chaos.

Green obtained an estimate of the value of K for which the last KAM torus disappears
in the Standard Map by considering the stability of the M cycles that approximate the
golden mean torus.

He introduced the idea of a Residue

1—Kcosf 1

1 M =
Ri_Z(Q—trace(Ti )) where T_( —Kcosf 1

> trace =2 — K cosf

Now the Residue R; is related to the stability of the M; cycle, because the its stability is
determined from the trace (T}). In fact for a critical point

if —2< trace(T) <2 the critical point is stable (elliptic)
if trace(T) >2 or < —2 the critical point is unstable (hyperbolic)

In terms of R; = 1 (2 — trace (TM))
if 0<R<1 the critical point is stable (elliptic)

So the M; cycle is stable if 0< R; <1

Now consider the limit of R; over i, as the M; cycles approach the irrational torus. Green

showed that
if lim R; =0 the KAM curve still exists.

1—00
if lim R; 200 the KAM curve has disappeared.
1—00
Actually at the critical value lim R; is nonzero and finite.
1—00
Using this method Green found the critical value of K* for the golden mean torus of
the standard map

K* =0.9716354 for K > K* the map is glabally chaotic.

For K < K* the golden mean torus bounds the motion.

However even once the torus has gone, strictly speaking, parts of it may remain for
K ~ K* which provide a partial barrier to the flow. The torus is then called a cantorus.
Reichl has more details on how to calculate the flow across these partial barriers.



Accelerator modes

Because the equation (6,11 = 6, + I,,41) for the angle 6 is modulo 27 there are also
solutions which are fixed in #, but jump in action by integer multiples of 27w. Suppose
I,y = I, — 2n¢, where / is an integer. Then 6,,.; = 6,, and since

I,,w=1,— Ksinf, = Ksinf, =27¢

27l
So that siné,, = % which has a solution provided K > 27/.
2l
sinf,, = % Vn Iy =2n(m—{¢n) for I, =2mm
Stability
Since

T:<1—Kcosﬁ 1

—Kcosf 1 > is independent of I

accelerator modes are stable if
—2<2—-—Kcosf<2 = 0<Kcosf<4

Since Ksinf) = 27 > 0 the mode with § < 6 < 7 is always unstable. But the mode
with 0 < 6 < § is stable if K’ < /16 4 (2m£)2. So if
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2l < K < 2wl /1 + <—€> the accelerator mode exists and is stable.
T

They are hard to find because though stable their island of stability is very small. However
accelerator modes are important because they are responsible for Levi Flights which can
have dramatic effects on the diffusion.



