Section 1. Classical Dynamics

Section 1.9 Chaos near Homoclinic or Heteroclinic points.

The separatrices which connect the saddles in say the nonlinear pendulum typically
don’t survive a perturbation. In fact the separatrix region is the first to go chaotic.
Even in dissipative systems heteroclinic orbits (connections between different saddles) or
homoclinic orbits (connections to the same saddle) are unlikely to survive a perturbation
and are a common source of chaotic behavior.

Take an integrable system with a homoclinic orbit. The extensions of the eigenspaces
of the saddle, the stable and unstable manifolds of the saddle, connect to each other. In
a heteroclinic orbit the stable manifold of one saddle connects to the unstable manifold
of the other saddle.

Heteroclinic orbits

Two Homoclinic orbits
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Now consider a canonical perturbation of such a system as a time periodic pertur-
bation. Call the intersection points of the stable and unstable manifolds homoclinic or
heteroclinic points depending on the unperturbed system. Suppose that under a per-
turbation 7, the stable and unstable manifolds intersect at a point P;. Then, because
it takes an infinite amount of time to approach a saddle point, there will be an infinite
number of intersection points.

Perturbed Homoclinic orbit

with time on the vertical axis. The intersecting manifolds
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These homoclinic points are mapped forwards by 7. and backwards by 7.-'. They
become more and more closely spaced as the saddle point is approached. But since area is
preserved by the map the oscillations in the manifold grow in amplitude. Near the saddle

the intersections of the stable manifold and unstable manifold becomes very complicated.
The intersecting manifolds

Area preserving implies area A equal
but distance between succesive Pitends to zero.

To investigate this we will first look at Melnikov’s method for determining when and
if transverse intersections of the manifolds do occur. Then we will use symbolic dynamics
to investigate the actual dynamics of the map near the saddle point.



Melnikov’s method for perturbations of Hamiltonian Systems.
Suppose that
H(q, p, t) = Ho(q, p) + €Hi(g; p, )

where Hj has a homoclinic orbit surrounding a continuous family of periodic orbits x,,
with period 7T,. The situation assumed is similar to the one for the Duffing Oscillator.
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Ho(q, p) = % —2¢° +¢* where
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which has a saddle at the origin and two centers at ¢ = +1.
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Further we require that the period of the orbits varies continuously with the energy.
That is if h, = Hy(Xa)

dTy . - :
Th >0 and 7T, — 0 as the orbits approach the homoclinic orbit.

Now perturb this system and there will still be saddle point near by, but the stable
and unstable manifolds may no longer join up.
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Suppose x = ( ;l) ) € R? then in phase space

x = f(x) + eg(x, t) where f= ( 28: ]]3 ) and g(x, t+27) = g(x, t)

If the unperturbed homoclinic in R? is thought of as a curve parametrized by time, then
at time %, the unstable and stable manifolds are separated by a perpendicular distance

d(to).



Let x(O)(t — #9) be the solution on the homoclinic orbit at time ¢.
The normal to the homoclinic orbit at time ¢ = ¢ is

. = f(xO(t =)
n(x%(0)) = ( F1(xO(t — ) >(t—t0)

Assuming that the perturbation is sufficiently smooth the perturbed manifolds will be
close to the homoclinic orbit. So on the unstable manifold

X! (t, to) = xO(t — to) + exi (t, to)

with a similar result for the stable manifold.

Then d(tp) is the component of x¥(to, to) — xZ(to, to) in the direction of the normal
n(x®(0)).
If we define

Alt, to) =n- (x{(t, to) = xi(t, o)) = £(xV(t = t0)) A (X1 (¢, to) — X3 (¢, t0))

where a A b = a1by — abq, the actual distance in the direction of the normal is

. € A (to, to)
~ E(x©(0)]

To work this out define A = A% — A% where

d(to)

A%, to) = F(xO(t — 1)) AXU(t, tg) and  A® (¢, to) = F(xO(t — 1)) AxS(t, to)
Differentiating gives

dA*
dt

(t, to) = (DEXO) AxY(t, to) + £(xO(t — t0)) AXY(2, t).

But x© (¢t — ty) = f(x (¢ — y)) and using Taylor series
O 4 ex = £(xV(t —t0)) + eDF(xV(t — t0))x"(t, o) + eg(xO (t — t0), t) + 0(€?)
so that
X} = DE(xQ(t — t0))x}(t, to) + g(xO(t — to), t) + 0(e).
Using these results

dA™

o (t, to) = (Df(x(o))f(x(o))) A XL (t, to)+

+£(xO) A (DE(xD)xU(t, to) + g(x D (t — 1), 1)) + 0(e)
A little algebra shows that

dA®
W(t’ to) = trace DE(xO)F(x@) A x¥ +£(x@) A g(xO(t — o), t) + 0(e)



But for Hamiltonian systems trace Df = 0, so that

dd—Atu(t’ to) = F(xO) A g(xO(t — ), t) + 0(e)

and so finally

to
A%(ty, to) — A¥(tg, —00) :/ £f(xO) A g(xO(t —1y), t)dt

Similarly
N*(00, tg) — AN3(to, to) :/ f(x) A g(xO(t — 1), t)dt
to

Now
A* (o0, tg) = tlim A°(t, to) = tlim £(xO(t — 1)) AXE(t, to)
—00 —00

which is zero because at the critical point f(0) = 0.

Similarly A¥(ty, —o0) = 0.

Now the unnormalized distance is A(tg, tg) = A%(to, to) — A*(to, to) which is called
the Melnikov function:

M (to) = Alto, to) = / f(xO(t —t0)) Ag(xO(t — 1), t)dt Melnikov Function

—0o0

The actual perpendicular distance between the stable and unstable manifolds is

. GM(to)
W) = 0 0)

however if we are interested in the zeros of d(¢y) then these are the same as the zeros of
the Melnikov function, M (t).

Example Forced Duffing.
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HO(Q: p) = % — 2q2 + q4 —eqcoswt  where

q=73
p=4(q — ¢*) + ecos wt

If € = 0 the solution on the separatrix is

q© = \/2sec h(+/2t)

h tt=
p© = 4sec h(v/2t) tanh(v/2t) where a 0

So the Melnikov Function is

oo 1(0)
M (to) :/ p 5 t)ecosw(t — to)dt.

oo

This can be evaluated by the method of residues to give

M (tg) = mwesec h sin(wty)

2V/2

This has an infinite set of simple zeros at the zeros of the sine function. Hence the stable
and unstable manifolds intersect transversely at an infinite number of points.



If both the original and perturbed system are Hamiltonian then the Melnikov function
can be written in terms of the Poisson Bracket:

M(ty) = / " (Hola(t  to), plt — o)), Hi(a(t — to), plt — to), 1) }dt

or changing the time integration
M) = [ {Holate), o), Hilal0), p(0), 1+ 1)}l

Theorem

If M(ty) has simple zeros and is independent of €, then for € > 0 sufficiently small,
the unstable manifold of the perturbed saddle W* and the stable manifold of the
perturbed saddle W/ intersect transversely.

Melnikov’s method can also be used to investigate perturbed orbits (not necessarily

mT
homoclinic to a critical point). Consider the periodic orbit with period T, = —, where
n

T is the period of the driver. Then
m mT
M (to) = / F(x (1)) A g(x*(0), ¢ + to)dt
0

Theorem

m dT,
If M~ (ty) has simple zeros and is independent of ¢ and Th # 0 then for € > 0

sufficiently small, there is a subharmonic orbit of period mT.aSo that the resonant
closed curve of period T, of the unperturbed Poincare Map breaks into a set of
2k = % periodic orbits each of period m, k£ of which are hyperbolic and k& of which
are elliptic.

Mel r[}li kov function
eM n(to)/|f|:d(to)



The one dimensional Bakers Map. is very simple to write: T'(z) = 2z(modl).

2% ifr <1
T(z) = o1 for z € [0, 1]
2r -1 if 5 <z <1
It maps onto [0, 1].
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Also the region [0, ;] is mapped to [0, 1] and the region [%, 1] is mapped to [3, 1].
So it seems likely that we could develop symbolic dynamics for this map as well. But
because the map is comprised of straight lines the subintervals will all have equal length.

In fact they have length 7 and we can use the binary representation of points in [0, 1]

to develop the symbolic dynamics. Let = € [0, 1] then

o0

x:%+%+%+?—é+---=zg for some a; =0 or 1

=1

then a; = 0, but since % > i then ay = 1.

1 _1 1 1 _ _
15 < g» but 55 > 7¢ so that a3 =0, ay =1 etc.

<

For instance if zq = %
Now the remainder %

1 0 1 0 1
3727178 6T
In this way any point in [0, 1] can be represented in binary form.

Further the binary form relates directly to the map. The region a; = 0 has two
subregions; a; = 0 in which points start in ¢; = 0 and are mapped to a; =0 and ay =1
in which points start in a; = 0 but are mapped to a; = 1.

So [0, 1] could be divided into 8 the intervals of width § labeled by |ag a; as]

|000]001|010]011|100|101|110|111 |
The labels are simply the numbers 0, 1, 2, 3, 4, 5, 6, 7 in binary.



Iterating the Bakers map.

If
a; 2.%‘0 if 0/1—0
T —+—+ +—+ -4+ —=--- and T(xg) =
2 "4 "8 " 16 2 (zo) {23:0—1 if ap=1
20+ 2w puy..) if a;=0
then = T'(zo) = i a42 a83 éi :
2G+F+g+H+) -1 i a=1
a2 | 03 4 | 05 i+1
T =2 _ ..
= (x0) 5 4+8+16+ + 9 +
So if
a(xg) = [a1aazagas...] then  a(T(xy)) =[azazasas...] is a shift on symbols.

The symbolic representation makes finding periodic orbits easy.
For instance the period-2 points have symbol sequences [010101...] = [01] and [10].

But in the Bakers Map we can actually work out the x value that corresponds to that
symbol sequence:

oo

(=01 — c=g+gtatmt =D 7 =2
w = 27478 T 1-& ~3

It is straightforward to check that this really is a period-2 point: T'(35) = 5 and T'(3) = 3.
Or take the period-3 point with symbol sequence a(z) = [010]

0+1+0+0+1+ 15‘31 1 B
2 4 8 16 428 A1-§
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® |

Check T(2) = 4, 7(4) = L and T(2) = 2.
7 7 7 7 7 7

Properties of the Bakers Map

e 1) There are periodic orbits of all periods.
In fact there are 2" periodic points of period-n. For instance there are 8 period-3
points, two of which are critical points which leaves two period-3 orbits.

e 2) Sensitive dependence on initial conditions.
This follows from the symbolic dynamics.

e 3) Periodic points are dense in [0, 1]. —— That is there is a periodic point arbi-
trarily close to any point in [0, 1].

e 4) If x and y are close then |T'(z) — T'(y)| grows as 2|z — y| and |T"(z) — T™(y)|
grows as 2"z — y|.

e 5) T has a dense orbit.
point.

This is a orbit which passes arbitrarily close to any



The 2D bakers Map is an area preserving Map in 2D whose iterates can be analyzed
using symbolic dynamics. The name comes from kneading dough because the unit square
is stretched in one direction and contracted in the other. The extended part is then cut

and placed on top.
contract
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(2x,y/2) if 0<x<1/2

B(x)y) = _
(2x-1,(y+1)/2 if 1/2<x<1
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Iterating backwards
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Each point in the unit square can be represented by a bi-infinite sequence.

a ={...a_s2a_1-agayas...} where the a; are 0 or 1.

which represents the intersection of the vertical and horizontal strips in the limit.
The actual representation of points in [0, 1] x [0, 1] is very similar to that for the 1d
Bakers Map. In fact we use a binary representation of points in [0, 1] for both z and y

= Z a;_il y= Z a; for some a; =0 or 1
=1 i=1
Then
(Z:il %a 222 0‘7(22'1'—1)) for0<z< % =a9=0
B(ﬂf,y) =

(Z;’il%+ao—1,2ﬁ2%+%) f0r0<a:<%=>a0=1



Now if ag = 0 effectively a_; = 0 and if ag = 1 effectively a_; = 1 and this term can
be included in the sum for y. So

and to iterate the map we simply shift the decimal point. So that if
a(z, y) = {...a_z3a_sa_1-aparazas...} = a(B(z,y)) ={...a_3a_2a_10a9- a1as...}
The 1D and 2D Bakers Map has the following properties
e 1) There are periodic orbits of all periods and periodic points are dense.
e 2) There are an uncountable infinity of bounded non periodic orbits.
e 3) The map has a dense orbit.
e 4) The map has sensitivity to initial conditions.

The Horseshoe Map in 2D

The Dynamics near the separatrix is actually quite similar to the 2D Bakers Map. If
you take a square near the saddle point at the origin and iterate it forwards in time it
will be stretched on one direction and contracted in the other. Eventually this elongated
region returns to the neighborhood of the critical point and intersects with the original
square. The result is a horseshoe map. The points that remain after all iterations can ,
like the 2D Bakers Map, be represented by a bi-infinite sequence.

The intersecting manifolds

= — > ___ )

Overlap
gives two horizontal strips D

Unfortunately the folding that occurs in the horseshoe map makes the symbol se-
quences harder to write down. The situation is similar to the Logistic Map or Tent
Map.

Consider the square ABCD, which we denote W, stretched and folded to become
A*B*C*D*, denoted h(W), which is shaped like a horseshoe. Some parts of ABCD
are mapped out of ABCD. We will only consider those points that remain, which are
W N h(W) and comprise of two vertical strips V7, and V. On the second iteration more
points are mapped out, those that remain W N A%(W). The points that remain for all
iterations of the map, forwards and backwards forms a cantor set A.



stretch TN
Horseshoe Map

contract

Iterating
backwards

So that the points are LR.RL

denoted by a bi-infinte
sequence of R's and L's.

RL.LL

Now, as with the Bakers map for any point v in A we assign a bi-infinite symbol
sequence

hi(v) liesin Vi let a; = L.

a(v) = {...a_s3a_sa_y.apa1090a3...}  where if hi(v) liesin Vi let a; = R.

However this only uses a; for 7 > 1 and so only fixes the point horizontally.

To fix the point vertically we need to iterate backwards. This gives horizontal strips
which we denote .L and .R. From this we obtain the regions L.L, L.R, R.L and R.R.
The ordering of the strips is not as straight forward as for the Bakers map.

The horseshoe map has an invariant Cantor set A such that

e 1) There are periodic orbits of all periods and periodic points are dense in A.
e 2) There are an uncountable infinity of bounded non periodic orbits in A.

e 3) The map has a dense orbit in A.

)

e 4) The map has sensitivity to initial conditions.



Smale-Birchoff Homoclinic Theorem.

Consider a map f : R*— > R? with an unstable (saddle-like) fixed point at P. The
stable and unstable manifolds of P are defined as

Wi={x: f"(z) > P as n— oo}

Wi={x: f"(x) > P as n— —oc}.

A homoclinic tangle occurs when these two manifolds intersect transversely. The set
of points W3 N W3, called homoclinic points, asymptotically attract to P as n — +oo.

Theorem. Let f : R”2— > R? be a diffeomorphism (a continuously differentiable
function that has a continuously differentiable inverse). Let y be a transversal
homoclinic point. Then there is an integer n such that F' = f" has a hyperbolic
invariant set A homeomorphic to a Cantor set containing P and y. The periodic
and homoclinic points are dense in A and F'|, is topologically conjugate to a shift
acting on the space of bi-infinite symbol sequences.

This theorem can then be used in conjunction with Melnikov’s method for proving
the existence of transversal homoclinic points.



