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HW Assignment #1,

MDP and Physical Models.
Prepared by Yoni Nazarathy, Last Updated: Aug 7, 2016.

This homework assignment is about Markov Decision Processes and Physical Models
(Units 2 and 3 of the course).

• For some of you the programming aspect may be a bit of a challenge. Make sure
to allow enough time for this. Break up each programming task into well-defined
sub-tasks.

• Please make sure to present your results in a clear and organised manner. Numer-
ical output results should always be well explained and documented. Labels on
graphs, diagrams, tables etc...

• Hand-in all code (preferably as an appendix).

• Follow any other general instructions for assignments as described in the subject
description.

Problem 1: Cloud Seeding MDP
Consider a simplistic model of weather, operating in discrete time and exhibiting state
space:

S = {1 = ’rain’, 2 = ’clouds’, 3 = ’sun’}.

At any given time, the government has the ability to seed (= ‘b′) or not seed (= ‘a′).
Hence the action space is,

A = {a, b}.

When no seeding is taking place, weather evolves according to the probability transition
matrix,

P (a) =

 0.1 0.5 0.4
0.1 0.3 0.6
0.01 0.59 0.4

 .
When seeding is taking place, weather evolves according to,

P (b) =

 0.15 0.45 0.4
0.3 0.2 0.5
0.1 0.6 0.3

 .
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A reward function at any given time is obtained based on the state x ∈ S and the control
u ∈ A, as follows:

r(x, u) = γ1{x = 1} − 1{u = b},

with γ some positive constant measuring the value of rain in comparison to the cost of
seeding. Take γ = 2 for the first items. The process x(`) controlled by u(`) is then a
Markov Decision Process.

Assume a seeding strategy wishes to maximise,

g = lim inf
T→∞

1

T
E

T−1∑
`=0

r
(
x(`), u(`)

)
.

1. Assume u(`) ≡′ a′ (no seeding policy). Calculate the stationary distribution vector,
π, satisfying, π P = π and

∑
πi = 1. Do this numerically using three different

ways: (i) Taking high powers of the matrix P . (ii) Solving the system of equations.
(iii) Monte-Carlo Simulation (yielding an estimate of π).

2. Using π, calculate g obtained by the no seeding policy.

3. There are a total of 8 stationary, Markov, deterministic policies. Each policy is
described by a decision rule: d : S → A. Enumerate each of the policies and
write the probability transition matrix associated with each such policy (it can be
obtained by interleaving rows of P (a) and P (b)). Then for each policy calculate
the stationary distribution π and the associated objective g. What is the best
policy?

4. The best policy obviously varies as γ varies from 0 to ∞. Using numerical com-
putation, investigate how this occurs. Your result should be a partition of [0,∞)
into segments where on each segment there is a different optimal policy.
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Problem 2: Optimal Usage of a Phone Battery
You are away on a trip with your cellular phone and without a charger. On previous
days you have taken many photos and videos. You wished to share these with friends,
but there was no connectivity. For 6 hours of today, you plan to be in a town with
connectivity so you can upload your media. However, you can’t charge your phone and
hence only have limited battery life. Your goal is to try and upload as many photos as
possible before the battery dies out.

You make a decision every 10 minutes if to upload more photos or not. Every 10
minutes, connectivity seems to vary between “bad state” (0) and “good state” (1) and
by looking at the connectivity level you can decide if to upload or not (for the next 10
minutes). The throughput (file upload rate) achieved with both types of states is the
same but the states vary as follows:

• In bad state (0), 10 minutes of upload depletes 5% of the battery and uploads
1GB.

• In good state (1), 10 minutes of upload depletes only 1% of the battery and uploads
1GB.

At the start of the day you have 100% of the battery. So you decision is for every
10 minute time interval (time step), if to transmit or not. With 6 hours you have 36
decision epochs.

Connectivity evolves as follows: At the first step connectivity is in bad state. After
that, the chance of connectivity change is 0.1 and the chance of no connectivity change
is 0.9. That is transitions occur according to a two state Markov chain with probability
transition matrix

P =

[
0.9 0.1
0.1 0.9

]
.

A strategy is then a time-dependent function getting values in {a, b} (don’t upload vs.
upload): d`(x, y) where ` ∈ {0, 1, 2, . . . , 35}, x ∈ {0, 1} (bad or good state respectively)
and y ∈ {0, 1, 2, . . . , 99, 100} (the precent battery remaining).

1. Assume you use the strategy of uploading as soon as possible. Compute (either
analytically, numerically or by simulation) the mean number of GB you will upload.

2. Assume you use the strategy of uploading only when in good state. Compute
(either analytically, numerically or by simulation) the mean number of GB you
will upload.

3. Write the Bellman equation for the optimal policy and explain how you can cal-
culate it numerically.

4. (Bonus only): Solve the Bellman equation and plot the optimal policy. What is
the mean number of GB uploaded? Is there some structure to the optimal policy?
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Problem 3: Dynamics of a Pendulum on a Cart
Consider the inverted pendulum example as described in class: A pendulum of mass
m, length L (to the centre of gravity) and moment of inertia (with respect to centre
of gravity) J , is connected to a cart of weight M pushed by a force u(t) with opposing
friction with a force of −F ṡ(t). Here s(t) is the displacement of the cart and φ(t) is the
angle of the pendulum.

The equations describing this system are:

m
d2

dt2
(
s(t) + L sinφ(t)

)
= H(t), (1)

m
d2

dt2
L cosφ(t) = V (t)−mg, (2)

J
d2φ(t)

dt2
= LV (t) sinφ(t)− LH(t) cosφ(t), (3)

M
d2s(t)

dt2
= u(t)− F ds(t)

dt
, (4)

where H(t) and V (t) are (respectively) the horizontal and vertical forces exerted on the
pendulum at the pivot.

1. To the best of your ability, describe how these equations arise from physical first
principles.

2. Setting L′ as the “effective pendulum length” with

L′ :=
J +mL2

mL
,

show that these equations reduce to:

φ̈(t)− g

L′
sinφ(t) +

1

L′
s̈(t) cosφ(t) = 0,

Ms̈(t)− u(t) + F ṡ(t) = 0.
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3. Linearize the system around the solution where the pendulum is facing exactly up
and is at rest. Using the state space representation,

x1(t) := s(t), x2(t) := ṡ(t), x3(t) := s(t) + L′φ(t), x4(t) := ṡ(t) + L′φ̇(t),

show that an (A,B,C,D) representation of the linearized system with measured
output (s(t), φ(t))is,

ẋ(t) =


0 1 0 0
0 − F

M
0 0

0 0 0 1
− g

L′ 0 g
L′ 0

x(t) +


0
1
M

0
0

u(t),

y(t) =

[
− 1

L′ 0 1
L′ 0

1 0 0 0

]
x(t).

4. Assume now that the pendulum is connected to a wall with a spring having spring
constant k. Repeat the items above for this slightly modified situation.
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