## Instructions

The exam consists of 5 questions, $1-5$. Each question has three items, a -c .

Within each question:
Item (a) carries a weight of 10 marks.
Item (b) carries a weight of 6 marks.
Item (c) carries a weight of 4 marks.

Answer ALL questions in the spaces provided.

If more space is required, use the back of the PREVIOUS page.

Show all your working and include sketches where appropriate.

## Question 1:

For every integer $n \geq 1$, denote $\mathcal{N}_{n}=\{1, \ldots, n\}$. Further, denote by $\mathcal{P}_{n}=2^{\mathcal{N}_{n}}$ the power-set of $\mathcal{N}_{n}$ comprised of all subsets of $\mathcal{N}_{n}$. For example,

$$
\mathcal{P}_{2}=\{\emptyset,\{1\},\{2\},\{1,2\}\} .
$$

(1a) Evaluate

$$
\sum_{n=1}^{\infty} \frac{1}{\left|\mathcal{P}_{n}\right|},
$$

or if the series does not converge, explain why.
(1b) Evaluate

$$
\sum_{n=1}^{\infty} \frac{1}{\left|\mathcal{N}_{n}\right|}
$$

or if the series does not converge, explain why.
(1c) For $k \in\{0, \ldots, n\}$, consider the sets,

$$
\mathcal{A}_{n}=\left\{q \in \mathcal{P}_{n}| | q \mid=k\right\},
$$

and,

$$
\mathcal{B}_{n}=\left\{q \in \mathcal{P}_{n}| | q \mid=n-k\right\} .
$$

Determine $\left|\mathcal{A}_{n}\right|-\left|\mathcal{B}_{n}\right|$ and prove your result.

## Question 2:

Let $n$ and $k$ be positive integers with $k \leq n$. Consider the identity (sometimes known as Pascal's formula),

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

(2a) Prove this identity using only words (without writing any mathematical symbols except for $n$ and $k$ ). If you are not able to do that, prove it using mathematical symbols.
(2b) Use induction and the above identity to prove that for $n \geq 0$,

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

(2c) Prove (in any way possible) that for $n \geq 0$,

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

## Question 3:

Given a function, $f:[0, \infty) \rightarrow \mathbb{R}$ and a variable $s \in \mathbb{R}$, it is often of interest to evaluate the function, $\widehat{f}(s)$ defined as

$$
\widehat{f}(s)=\int_{0}^{\infty} e^{s x} f(x) d x
$$

when the indefinite integral converges.
(3a) Let $f(x)=4 e^{-4 x}$. Determine $\widehat{f}(8)$.
(3b) Continuing with $f(x)=4 e^{-4 x}$, for what values of $s \in \mathbb{R}$ does the indefinite integral of $\widehat{f}(s)$ converge?
(3c) For an arbitrary $f(x)$, denote,

$$
m_{n}=\int_{0}^{\infty} x^{n} f(x) d x
$$

Assuming you may interchange limits of summations and integrals, use the fact that,

$$
e^{s x}=\sum_{k=0}^{\infty} \frac{(s x)^{k}}{k!}
$$

to show that for $n=0,1,2, \ldots$

$$
\left.\frac{d \widehat{f}(s)^{n}}{d s^{n}}\right|_{s=0}=m_{n}
$$

Here the expression means taking the $n$ 'th derivative of $\widehat{f}(s)$ and then substituting $s=0$.

## Question 4:

Consider the function,

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{(x+1)^{2}}{2}}
$$

It is known that,

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

(4a) Does $f(x)$ have a global maximum? If so what is it? Prove/show your result using the first and second derivative.
(4b) Evaluate,

$$
\int_{-\infty}^{\infty} x f(x) d x
$$

(4c) Determine an interval $[a, b] \subset \mathbb{R}$ such that,

$$
[a, b]=\left\{x \in \mathbb{R} \mid f^{\prime \prime}(x) \leq 0\right\}
$$

If no such interval exists, prove it.

## Question 5:

Consider the matrix

$$
A=\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 4 & 3 / 4
\end{array}\right]
$$

Denote by $A^{n}=A \times A \times \ldots \times A$ (matrix multiplication of $n$ matrices).
(5a) Calculate $A^{3}$.
(5b) It is believed that,

$$
(*) \quad A^{n}=\frac{1}{3}\left(\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]+\frac{1}{4^{n}}\left[\begin{array}{cc}
2 & -2 \\
-1 & 1
\end{array}\right]\right)
$$

Verify that $\left({ }^{*}\right)$ is true for $n=1,2,3$.
(5c) Prove that $\left(^{*}\right)$ holds for all $n \geq 1$ by induction.

