Instructions

The exam consists of 5 questions, $1-5$. Each question has three items, a -c .

Within each question:
Item (a) carries a weight of 10 marks.
Item (b) carries a weight of 6 marks.
Item (c) carries a weight of 4 marks.

Answer ALL questions in the spaces provided.

If more space is required, use the back of the PREVIOUS page.

Show all your working and include sketches where appropriate.

Question 1:

Consider the set of 26 lower-case characters, $\mathcal{C}=\{a, b, c, \ldots, z\}$. Let R be a binary relation on $\mathcal{C}^{3}:=\mathcal{C} \times \mathcal{C} \times \mathcal{C}$ such that $\omega_{1} R \omega_{2}$ if and only if the word ω_{1} appears before the word ω_{2} in lexicographic ordering (alphabetical ordering as in a dictionary). Here treat a word as a 3 -tuple $\left(c_{1}, c_{2}, c_{3}\right)$, not necessarily valid in English or any other human language. That is, any 3 -tuple is considered a word.

For example, we have that $((x, b, h),(y, b, d)) \in R$ and $((z, a, c),(y, b, d)) \notin R$.
Also $((k, b, c),(k, b, c)) \notin R$.
(1a) Consider the set,

$$
B=\left\{\omega \in \mathcal{C}^{3}:(\omega,(c, a, a)) \in R\right\}
$$

Determine $|B|$.
(1b) For words $\omega_{1}, \omega_{2} \in \mathcal{C}^{3}$ denote the set,

$$
\mathcal{I}_{\omega_{1}, \omega_{2}}=\left\{\omega \in \mathcal{C}^{3}: \omega_{1} R \omega \wedge \omega R \omega_{2}\right\}
$$

Prove that if $\neg \omega_{1} R \omega_{2}$ then $\mathcal{I}_{\omega_{1}, \omega_{2}}=\emptyset$.
(1c) Denote now $\mathcal{D}=\{a, b\}$ (the set of the first two lower-case letters). Determine the value of

$$
\left|\left(\mathcal{D}^{3} \times \mathcal{D}^{3}\right) \cap R\right| .
$$

Question 2:

Let n and k be positive integers with $k \leq n$. Consider the identity (sometimes known as Pascal's formula),

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

(2a) Prove this identity using only words (without writing any mathematical symbols except for n and k). If you are not able to do that, prove it using mathematical symbols.
(2b) Use induction and the above identity to prove that for $n \geq 0$,

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

(2c) Prove (in any way possible) that for $n \geq 0$,

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

Question 3:

Given a function, $f:[0, \infty) \rightarrow \mathbb{R}$ and a variable $s \in \mathbb{R}$, it is often of interest to evaluate the function, $\widehat{f}(s)$ defined as

$$
\widehat{f}(s)=\int_{0}^{\infty} e^{s x} f(x) d x
$$

when the indefinite integral converges.
(3a) Let $f(x)=2 e^{-2 x}$. Determine $\widehat{f}(5)$.
(3b) Continuing with $f(x)=2 e^{-2 x}$, for what values of $s \in \mathbb{R}$ does the indefinite integral of $\widehat{f}(s)$ converge?
(3c) For an arbitrary $f(x)$, denote,

$$
m_{n}=\int_{0}^{\infty} x^{n} f(x) d x
$$

Assuming you may interchange limits of summations and integrals, use the fact that,

$$
e^{s x}=\sum_{k=0}^{\infty} \frac{(s x)^{k}}{k!}
$$

to show that for $n=0,1,2, \ldots$

$$
\left.\frac{d \widehat{f}(s)^{n}}{d s^{n}}\right|_{s=0}=m_{n}
$$

Here the expression means taking the n 'th derivative of $\widehat{f}(s)$ and then substituting $s=0$.

Question 4:

Consider the function,

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-1)^{2}}{2}}
$$

It is known that,

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

(4a) Does $f(x)$ have a global maximum? If so what is it? Prove/show your result using the first and second derivative.
(4b) Evaluate,

$$
\int_{-\infty}^{\infty} x^{2} f(x) d x
$$

(4c) Determine an interval $[a, b] \subset \mathbb{R}$ such that,

$$
[a, b]=\left\{x \in \mathbb{R} \mid f^{\prime \prime}(x) \leq 0\right\}
$$

If no such interval exists, prove it.

Question 5:

Consider a function $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3 \times 3}$ defined as follows,

$$
F\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{3}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right]
$$

(the third column contains the values squared).
(5a) Determine the matrix $F(y, 0,0) * F(y, 1,1)$ (where $*$ is matrix multiplication).
(5b) Is $F(y, 0,0)$ singular for any value of y ? If so for what value? If not, prove your result.
(5c) Consider now the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by,

$$
f(z)=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] * F(0, z, 0) *\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Does $f(z)$ have a global minimum? If so find it.

