MATH7501 Additional Problems for Assignment

Find the limits of the following sequences. If the limit does not exist, explain why.
(a) $\left\{\cos (2 n+1) \frac{\pi}{2}\right\}_{n=1}^{\infty}$
(b) $\left\{\frac{\pi^{n}}{4^{n}}\right\}_{n=1}^{\infty}$
(c) $\left\{\frac{n^{2}+3}{n^{3}+n^{2}-1}\right\}_{n=1}^{\infty}$
(d) $\left\{n \sin \frac{\pi}{n}\right\}_{n=1}^{\infty}$
(e) $\left(1-\frac{1}{2}\right),\left(\frac{1}{2}-\frac{1}{3}\right),\left(\frac{1}{3}-\frac{1}{4}\right),\left(\frac{1}{4}-\frac{1}{5}\right), \ldots$
(f) $(\sqrt{2}-\sqrt{3}),(\sqrt{3}-\sqrt{4}),(\sqrt{4}-\sqrt{5}), \ldots$

Determine if the following series converge or diverge:
(g) $\sum_{n=1}^{\infty} \frac{\cos ^{2}(n \pi)}{n!}$
(h) $\sum_{n=2}^{\infty}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)$
(i) $\sum_{n=1}^{\infty} \frac{n+\sin (n)}{n^{4}+n}$
(j) $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$
(k) Consider a square inside which is inscribed a circle, inside which is inscribed a square, inside which is inscribed a circle, and so on, with the outermost square having side length 1 . Find the difference between the sum of the areas of the squares and the sum of the areas of the circles.

(1) Let F_{n} be the n-th Fibonacci number defined by $F_{0}=F_{1}=1, F_{n+1}=F_{n}+F_{n-1}$. Determine whether or not the following converges

$$
\sum_{n=0}^{\infty} F_{n}^{-1} .
$$

If so, prove carefully and find the limit. If not, state why not.
(m) Let for n a positive integer and $p \in[0,1]$ let,

$$
P(k ; n, p)=\binom{n}{k} p^{k}(1-p)^{n-k} .
$$

Assume now that there is a sequence $\left\{p_{n}\right\}$ such that $n p_{n}=\lambda$ for some $\lambda>0$ and find an expression for the limit,

$$
\lim _{n \rightarrow \infty} P\left(k ; n, p_{n}\right) .
$$

Hint: Look up "Poisson Limit Theorem" or "Poisson approximation to binomial".

