Evaluate the following limits:
(a) $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)$
(b) $\lim _{x \rightarrow \pi / 4}(1-\tan x)(\sec 2 x)$
(c) $\lim _{x \rightarrow \infty} x\left(2^{1 / x}-1\right)$ (Hint: Express the limit in terms of $\left.t=1 / x\right)$
(d) $\lim _{x \rightarrow 1} x^{1 /(1-x)}$

Let f be a function defined by

$$
f(x)= \begin{cases}2 x-x^{2}, & x \leq 1 \\ x^{2}+k x+p, & x>1\end{cases}
$$

(e) For what values of k and p will f be continuous and differentiable at $x=1$?
(f) For the values of k and p found in part (a), on what interval or intervals is f increasing?
(g) Consider the function

$$
f(x)=x^{3}+\frac{\sin (x)}{x}-3 .
$$

Show that $f(x)$ is continuous on \mathbb{R}. Does there exist $\alpha \in \mathbb{R}$, such that $f(\alpha)=17$? If so, state why. Use the bisection method to find $\alpha \in \mathbb{R}$ such that $f(\alpha)=0$.
(h) Consider the function f acting from $\mathbb{R}^{2} \backslash\{0,0\}$ to \mathbb{R} and given by the formula

$$
f(x, y)=\frac{1-e^{3 x^{2}-y}}{2 x^{2}+y^{4}}
$$

Does the limit $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exist? Justify your answer.
(i) Consider a general 2×2 matrix,

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Determine when M^{-1} exists and specify a formula for it (you can look it up or use Mathematica). Then prove that $M M^{-1}=I$.
(j) Find the inverse of the matrices

$$
A=\left(\begin{array}{ll}
8 & 1 \\
2 & 3
\end{array}\right), \quad B=\left(\begin{array}{ll}
3 & 2 \\
6 & 4
\end{array}\right)
$$

if they exist.
(k) Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be 2 by 2 matrices, where $i, j \in\{1,2\}$. Prove that

$$
(A+B)^{T}=A^{T}+B^{T}, \quad(A B)^{T}=B^{T} A^{T}
$$

Let A, B be given in (1) and let $C=B+I$. Calculate $(A C)^{-1}$ without calculating $A C$.
(1) Let A, B be given in (j). Calculate $A B$ and $B A$.
(m) Let A and B be 3 by 3 invertible matrices with determinants -39 and $\frac{77}{3}$ respectively. Find the determinant of $B A$.
(n) Let A be an invertible n by n matrix. The trace of a matrix is the sum of the diagonal elements. Prove generally that the trace of $A+B$ is equal to the sum of the traces of A and B.
(o) The eigenvalues of a matrix A are the complex numbers given by

$$
\operatorname{det}(A-\lambda I)=0
$$

Calculate the eigenvalues of the matrix A given in (j).
(p) Consider an $1 \times n$ matrix $A=[1,, \ldots, 1]$ (a row of ones). Calculate the trace of $A^{\prime} A$ and the trace of $A A^{\prime}$.
(q) Consider an $n \times n$ matrix B with elements $b_{i, j}=i+j$. Find a formula for $A B A^{\prime}$ where A is the row of 1's from the previous problem.
(r) Repeat the previous problem with $b_{i, j}=i+j^{2}$.
(s) Prove (by counter-example) that $\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$.

