MATH7501 Assignment Solutions

These solutions produced by Mitchell Griggs.

Unit 1

1. Example 6

$$
\begin{aligned}
A \cap B & =\{2,4\} \\
A \cup B & =\{1,2,3,4,6,8,10\} \\
B \cup C & =\{1,2,3,4,5,6,7,8,9,10\} \\
B-A & =\{6,8,10\} \\
A-C & =\{2,4\} \\
B^{c} & =\{1,3,5,7,9\} \\
A^{c} & =\{5,6,7,8,9,10\} \\
A^{c} \cup B & =\{2,4,5,6,7,8,9,10\}
\end{aligned}
$$

2. Example $8 y=3$ and $z=\sqrt{9}=3$.

3. Example 9

$$
A \times B=\{(-1, x),(-1, y),(0, x),(0, y),(1, x),(1, y)\}
$$

4. Example 10
(a) F
(b) T
(c) T
(d) F (unless if the universe is \emptyset)
(e) T
(f) T
(g) T
(h) F
5. Example 11 No but $\left\{A_{1},\{0\}, A_{2}\right\}$ is a partition of \mathbb{Z}.

6. Example 12

$$
\{\{4 n: n \in \mathbb{Z}\},\{4 n+1: n \in \mathbb{Z}\},\{4 n+2: n \in \mathbb{Z}\},\{4 n+3: n \in \mathbb{Z}\}\}
$$

7. Example 13

$$
\mathcal{P}(B)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}, B\}
$$

8. $i=e^{\frac{\pi}{2} i} \Rightarrow i^{n}=e^{\frac{n \pi i}{2}}$.
9. Example 16 (Mathematica.)
10. Example 17(c)

$$
\binom{8}{4}=\frac{8!}{4!4!}=70
$$

11. Example 18

$$
\binom{5}{3}=\frac{5!}{2!3!}=10
$$

12. Example 19
(a)

$$
\binom{10}{3}=120
$$

(b) $10 \times 9 \times 8=720$
(c) The first answer counted the number of outcomes when order does not matter. In the second answer, order DOES matter.
13.

$$
2^{n}=(1+1)^{n}=\sum_{i=0}^{n}\binom{n}{i} 1^{i} 1^{n-i}=\sum_{i=0}^{n}\binom{n}{i},
$$

by the binomial expansion of $(1+1)^{n}$.

14. Example 21

$$
\binom{x+3}{x+1}=\frac{(x+3)!}{(x+1)!2!}=\frac{(x+3)(x+2)}{2}=\binom{x+3}{2}
$$

15. The number $\binom{n+1}{r}$ is the number of r-subsets (an r-subset is a subset with cardinality r) of a set with cardinality $n+1$.

Another way to count this number is to consider an element from the $(n+1)$ set. Call this element x. Out of each subset of the $(n+1)$-set, if x is in the subset then there are $\binom{n}{r-1}$ way to choose the other elements, but if x is not in the subset then there are $\binom{n}{r}$ ways to choose the subset. Thus,

$$
\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r} .
$$

16. Example 22

(a) 28
(b) 210
(c) 10
(d) 21
17.

\mathbb{Z}^{+}	\mathbb{Q}
0	0
1	1
2	-1
3	$2=2 / 1$
4	$-2=-2 / 1$
5	$1 / 2$
6	$-1 / 2$
7	$3=3 / 1$
8	$-3=-3 / 1$
9	$3 / 2$
\vdots	\vdots

Can you see a pattern? We can label each rational number. This is a version of Cantor's Diagonal Argument.

Unit 2

18. Example 30

(i) $(1,0),(2,0),(2,2),(3,0),(3,2),(4,0),(4,2),(4,4),(5,0),(5,2),(5,4)$
(ii) $(2,2),(4,4)$
(iii) $(2,0),(2,2),(2,4),(2,6),(2,8),(4,0),(4,2),(4,4),(4,6),(4,8)$
(iv) $(1,6),(3,4),(5,2)$
(v) $(2,8),(3,8),(4,6),(4,8),(5,6),(5,8)$
19. Example 31 Examples:
$x \rho y$ if and only if $|x| \geqslant y$
$x \rho y$ if and only if $|x|<y-1$
$x \rho y$ if and only if $x^{2}=y$
$x \rho y$ if and only if $x=y+2$
\vdots
20. Example 32
(i) $(0,0),(-1,0),(1,5), \ldots$
(ii) $(1,0),(0,-2),(100,2), \ldots$
(iii) $(0,0),(1,1),(1,-1), \ldots$
(iv) $(0,0),(7,7),(-4,-4), \ldots$
(v) $(0,-1),(5,4),(-2,-3), \ldots$
(vi) $(0,0),(1,2),(-5,8), \ldots$
21. Example 34 See Figure 1.
22. Example 35 No; $(6,2) \in R$ and $(6,8) \in R$ but $2 \neq 8$.
23. Example $36 \rho^{-1}=\{(4, x),(10, x),(1, z),(7, y),(1, y)\}$

Figure 1

24. Example 37

(a) R is the set whose elements are the following pairs: $(1,1),(1,4),(1,7)$,

$$
\begin{aligned}
& (1,10),(2,5),(2,8),(2,2),(3,3),(3,6),(3,9),(4,1),(4,4),(4,7),(4,10), \\
& (5,2),(5,5),(5,8),(6,3),(6,6),(6,9),(7,1),(7,4),(7,7),(7,10),(8,2), \\
& (8,5),(8,8),(9,3),(9,6),(9,9),(10,1),(10,4),(10,7),(10,10)
\end{aligned}
$$

(b) $R^{-1}=R$ because $3 \mid(x-y)$ if and only if $3 \mid(y-x)$.
(c) See Figure 2.

25. Example 38

R_{1} is not reflexive, is not symmetric, and is not transitive.
R_{2} is reflexive, is symmetric, and is transitive.
R_{3} is reflexive, is symmetric, and is transitive.
R_{4} is not reflexive, is not symmetric, and is not transitive.
R_{5} is reflexive, is not symmetric, and is transitive.

Figure 2
R_{6} is reflexive, is symmetric, and is transitive.

26. Example 41

(a) σ is not reflexive.
(b) σ is not symmetric.
(c) σ is transitive.
27. Example 43
(i) ρ is reflexive.
(ii) ρ is symmetric.
(iii) ρ is transitive.
28. Example 44 If R is symmetric then $(x, y) \in R \Rightarrow(y, x) \in R$, and $R^{-1}=\{(y, x):(x, y) \in R\}$, so $R=R^{-1}$. Conversely, if $(x, y) \in R$ and $R=R^{-1}$, then $(y, x) \in R^{-1}=R$ so $(y, x) \in R$, showing that R is symmetric.
29. Example 45 True; if R is transitive then $(x, y),(y, z) \in R \Rightarrow(x, z) \in R$.

If $(a, b),(b, c) \in R^{-1}$ then $(b, a),(c, b) \in R$, which means $(c, b),(b, a) \in R$, so $(c, a) \in R$ (by the transitivity of R) and therefore $(a, c) \in R^{-1}$. In other
words, $(a, b),(b, c) \in R^{-1} \Rightarrow(a, c) \in R^{-1}$, showing that R^{-1} is transitive.
30. Example 46
$R=\{(1,1),(1,5),(1,9),(5,1),(5,5),(5,9),(3,3),(3,7),(7,3),(7,7),(11,11)\}$
31. Example 47 See Figure 3. R is an equivalence relation.

Figure 3
32. Example $51 S$ is not a function because $(0,0) \in S$ and $(0,4) \in S$ but $0 \neq 4$.
33. Example $52 f$ is not a function because (for example)

$$
f(1 / 2)=1 \neq 2=f(2 / 4)
$$

but $1 / 2=2 / 4$. In other words, $(1 / 2,1) \in f$ and $(2 / 4,2)=(1 / 2,2) \in f$ but $1 \neq 2$.

34. Example 54

α is not a function since $\alpha(2)$ is not defined.
β is a function.
γ is not a function; $(1, a),(1, b) \in \gamma$ but $a \neq b$.
δ is not a function; $\delta(3)$ is not defined.
35. Example 55 For every $x \in \mathbb{R}$,

$$
f(x)=x=\sqrt[3]{x^{3}}=g(x),
$$

so $f=g$.
36. Example $56 f(-1)=-1 \neq 1=g(-1)$ so $f \neq g$.
37. Example 59

$$
(3,4,5) \star(5,12,13)=(-33,45,65)
$$

38. $e^{i \theta}=\cos \theta+i \sin \theta$. This result gives formulae such as

$$
\begin{aligned}
(\cos \theta+i \sin \theta)^{n} & =\left(e^{i \theta}\right)^{n} \\
& =e^{i(\theta n)}=\cos (n \theta)+i \sin (n \theta)
\end{aligned}
$$

which is de Moivre's Theorem. For example, if $n=2$ then this gives

$$
\begin{aligned}
\cos (2 \theta) & =\cos ^{2} \theta-\sin ^{2} \theta \text { and } \\
\sin (2 \theta) & =2 \cos \theta \sin \theta .
\end{aligned}
$$

39. Example 62
(a)

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=\left(2 x-x^{2}\right)^{3}, \\
& (g \circ f)(x)=g(f(x))=2 x^{3}-x^{6} .
\end{aligned}
$$

(b) No; $f \circ g \neq g \circ f$.
40. Example 63
(a) See Figure 4.
(b) $\{y, z\}$
41. Example 65

Figure 4
(a) See Figure 5.
(b) $s \circ t$ is onto.
42. Example 67
(a) f is not one-to-one; $f(-1)=2=f(1)$.
(b) g is injective; if $x_{1}, x_{2} \in \mathbb{R}$ and $g\left(x_{1}\right)=g\left(x_{2}\right)$ then

$$
2 x_{z}^{3}-1=2 x_{2}^{3}-1 \Rightarrow x_{1}=x_{2}
$$

43. Example 68
(a) (i) 32
(ii) 28
(iii) 32
(iv) 98
(b) H is not one-to-one; $H(40076832)=H(41134032)$ but $40076832 \neq$ 41134032.
44. Example 70

Figure 5
(a) f is surjective; for any $y \in \mathbb{R}^{+} \cup\{0\}$, the number $-\sqrt{y} \in \mathbb{R}$ satisfies $f(-\sqrt{y})=y$.
(b) g is not onto; if $g(x)=-1$ then x is not in the domain (\mathbb{Z}) of g.
45. Example $72 f$ is one-to-one.
46. Example 73 If $f\left(x_{1}\right)=f\left(x_{2}\right)$ then we find $x_{1}=x_{2}$, so f is one-to-one.
47. Example $74 f^{-1}$ does not exist because f is not one-to-one. g^{-1} exists and is described by the diagram of Figure 6.
48. Example 75 Say $y=g(x)=2 x+5$, so

$$
g^{-1}(y)=x=\frac{y-5}{2} .
$$

Therefore $g^{-1}(x)=\frac{x-5}{2}$.
50. $\arcsin :(-1,1) \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) ;$ see Figure 7.
51. Example 78 See Figure 8.
52. Example 79 If $z=a x+b y+d$ then $(0,0,5)$ gives $d=5$ and then $(0,1,1)$ is used to find $b=-4$. Next, $(1,3,2)$ yields $a=9$, so the equation of the plane is

$$
z=9 x-4 y+5
$$

Figure 6
53. Example 80 See Figure 9.
54. Example 81 See Figure 10.
55. Example 82 See Figure 11.
56. Example 83 Say $z=m x+n y+c$. We have $\Delta z=1-0=1$. Considering when $y=0$,

$$
\begin{aligned}
& 0=-2 x+5 \Rightarrow x=5 / 2 \\
& 0=-2 x+2 \Rightarrow x=1
\end{aligned}
$$

so $\Delta x=1-5 / 2=-3 / 2$, giving $m=\frac{\Delta z}{\Delta x}=\frac{-2}{3}$.
Similarly, from considering $x=0$, we get $\Delta y=2-5=-3 \Rightarrow n=\frac{-1}{3}$.
Therefore $z=\frac{-2}{3} x-\frac{1}{3} y+c$. When $z=0$, we then get $c=5 / 3$, so the equation of the plane is

$$
z=\frac{-2}{3} x-\frac{1}{3} y+\frac{5}{3} .
$$

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

