MATH7501 Assignment Solutions

These solutions produced by Mitchell Griggs.

Unit 1

1. Example 6

$$\begin{split} A \cap B &= \{2, 4\} \\ A \cup B &= \{1, 2, 3, 4, 6, 8, 10\} \\ B \cup C &= \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \\ B - A &= \{6, 8, 10\} \\ A - C &= \{2, 4\} \\ B^c &= \{1, 3, 5, 7, 9\} \\ A^c &= \{5, 6, 7, 8, 9, 10\} \\ A^c \cup B &= \{2, 4, 5, 6, 7, 8, 9, 10\} \end{split}$$

- **2. Example 8** y = 3 and $z = \sqrt{9} = 3$.
- 3. Example 9

$$A \times B = \{(-1, x), (-1, y), (0, x), (0, y), (1, x), (1, y)\}$$

- (a) F
- (b) T
- (c) T
- (d) F (unless if the universe is \emptyset)
- (e) T
- (f) T
- (g) T
- (h) F
- 5. Example 11 No but $\{A_1, \{0\}, A_2\}$ is a partition of \mathbb{Z} .

 $\{\{4n : n \in \mathbb{Z}\}, \{4n+1 : n \in \mathbb{Z}\}, \{4n+2 : n \in \mathbb{Z}\}, \{4n+3 : n \in \mathbb{Z}\}\}$

7. Example 13

$$\mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, B\}$$

- 8. $i = e^{\frac{\pi}{2}i} \Rightarrow i^n = e^{\frac{n\pi i}{2}}$.
- 9. Example 16 (Mathematica.)
- 10. Example 17(c)

$$\binom{8}{4} = \frac{8!}{4!4!} = 70$$

11. Example 18

$$\binom{5}{3} = \frac{5!}{2!3!} = 10$$

12. Example 19

(a)

$$\binom{10}{3} = 120$$

- (b) $10 \times 9 \times 8 = 720$
- (c) The first answer counted the number of outcomes when order does not matter. In the second answer, order DOES matter.

13.

$$2^{n} = (1+1)^{n} = \sum_{i=0}^{n} \binom{n}{i} 1^{i} 1^{n-i} = \sum_{i=0}^{n} \binom{n}{i},$$

by the binomial expansion of $(1+1)^n$.

$$\binom{x+3}{x+1} = \frac{(x+3)!}{(x+1)!2!} = \frac{(x+3)(x+2)}{2} = \binom{x+3}{2}$$

15. The number $\binom{n+1}{r}$ is the number of *r*-subsets (an *r*-subset is a subset with cardinality r) of a set with cardinality n + 1.

Another way to count this number is to consider an element from the (n+1)-set. Call this element x. Out of each subset of the (n + 1)-set, if x is in the subset then there are $\binom{n}{r-1}$ way to choose the other elements, but if x is not in the subset then there are $\binom{n}{r}$ ways to choose the subset. Thus,

$$\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}.$$

16. Example 22

- (a) 28
- (b) 210
- (c) 10
- (d) 21
- 17.

\mathbb{Z}^+	\mathbb{Q}
0	0
1	1
2	- 1
3	2 = 2/1
4	-2 = -2/1
5	1/2
6	-1/2
7	3 = 3/1
8	-3 = -3/1
9	3/2
:	:

Can you see a pattern? We can label each rational number. This is a version of *Cantor's Diagonal Argument*.

Unit 2

- (i) (1,0), (2,0), (2,2), (3,0), (3,2), (4,0), (4,2), (4,4), (5,0), (5,2), (5,4)
- (ii) (2,2), (4,4)
- **(iii)** (2,0), (2,2), (2,4), (2,6), (2,8), (4,0), (4,2), (4,4), (4,6), (4,8)
- (iv) (1,6), (3,4), (5,2)
- (v) (2,8), (3,8), (4,6), (4,8), (5,6), (5,8)

19. Example 31 Examples:

- $x \rho y$ if and only if $|x| \ge y$
- $x \rho y$ if and only if |x| < y 1
- $x\rho y$ if and only if $x^2 = y$

 $x\rho y$ if and only if x = y + 2

÷

- (i) $(0,0), (-1,0), (1,5), \ldots$
- (ii) $(1,0), (0,-2), (100,2), \ldots$
- **(iii)** $(0,0), (1,1), (1,-1), \ldots$
- (iv) $(0,0), (7,7), (-4,-4), \ldots$
- (v) $(0,-1), (5,4), (-2,-3), \ldots$
- (vi) $(0,0), (1,2), (-5,8), \ldots$
- **21. Example 34** See Figure 1.
- **22. Example 35** No; $(6, 2) \in R$ and $(6, 8) \in R$ but $2 \neq 8$.
- **23. Example 36** $\rho^{-1} = \{(4, x), (10, x), (1, z), (7, y), (1, y)\}$

Figure 1

- (a) R is the set whose elements are the following pairs: (1, 1), (1, 4), (1, 7), (1, 10), (2, 5), (2, 8), (2, 2), (3, 3), (3, 6), (3, 9), (4, 1), (4, 4), (4, 7), (4, 10), (5, 2), (5, 5), (5, 8), (6, 3), (6, 6), (6, 9), (7, 1), (7, 4), (7, 7), (7, 10), (8, 2), (8, 5), (8, 8), (9, 3), (9, 6), (9, 9), (10, 1), (10, 4), (10, 7), (10, 10)
- (b) $R^{-1} = R$ because 3|(x y) if and only if 3|(y x).
- (c) See Figure 2.

25. Example 38

 R_1 is not reflexive, is not symmetric, and is not transitive.

 R_2 is reflexive, is symmetric, and is transitive.

 R_3 is reflexive, is symmetric, and is transitive.

- R_4 is not reflexive, is not symmetric, and is not transitive.
- R_5 is reflexive, is not symmetric, and is transitive.

Figure 2

 R_6 is reflexive, is symmetric, and is transitive.

26. Example 41

(a) σ is not reflexive.

- (b) σ is not symmetric.
- (c) σ is transitive.

27. Example 43

- (i) ρ is reflexive.
- (ii) ρ is symmetric.
- (iii) ρ is transitive.

28. Example 44 If R is symmetric then $(x, y) \in R \Rightarrow (y, x) \in R$, and $R^{-1} = \{(y, x) : (x, y) \in R\}$, so $R = R^{-1}$. Conversely, if $(x, y) \in R$ and $R = R^{-1}$, then $(y, x) \in R^{-1} = R$ so $(y, x) \in R$, showing that R is symmetric.

29. Example 45 True; if R is transitive then $(x, y), (y, z) \in R \Rightarrow (x, z) \in R$.

If $(a, b), (b, c) \in \mathbb{R}^{-1}$ then $(b, a), (c, b) \in \mathbb{R}$, which means $(c, b), (b, a) \in \mathbb{R}$, so $(c, a) \in \mathbb{R}$ (by the transitivity of \mathbb{R}) and therefore $(a, c) \in \mathbb{R}^{-1}$. In other

words, $(a, b), (b, c) \in \mathbb{R}^{-1} \Rightarrow (a, c) \in \mathbb{R}^{-1}$, showing that \mathbb{R}^{-1} is transitive.

30. Example 46

 $R = \{(1,1), (1,5), (1,9), (5,1), (5,5), (5,9), (3,3), (3,7), (7,3), (7,7), (11,11)\}$

31. Example 47 See Figure 3. *R* is an equivalence relation.

Figure 3

32. Example 51 S is not a function because $(0,0) \in S$ and $(0,4) \in S$ but $0 \neq 4$.

33. Example 52 f is not a function because (for example)

$$f(1/2) = 1 \neq 2 = f(2/4),$$

but 1/2 = 2/4. In other words, $(1/2, 1) \in f$ and $(2/4, 2) = (1/2, 2) \in f$ but $1 \neq 2$.

34. Example 54

 α is not a function since $\alpha(2)$ is not defined.

 β is a function.

 γ is not a function; $(1, a), (1, b) \in \gamma$ but $a \neq b$.

 δ is not a function; $\delta(3)$ is not defined.

35. Example 55 For every $x \in \mathbb{R}$,

$$f(x) = x = \sqrt[3]{x^3} = g(x),$$

so f = g.

- **36. Example 56** $f(-1) = -1 \neq 1 = g(-1)$ so $f \neq g$.
- 37. Example 59

$$(3,4,5) \star (5,12,13) = (-33,45,65)$$

38. $e^{i\theta} = \cos \theta + i \sin \theta$. This result gives formulae such as

$$(\cos \theta + i \sin \theta)^n = (e^{i\theta})^n$$
$$= e^{i(\theta n)} = \cos(n\theta) + i \sin(n\theta),$$

which is de Moivre's Theorem. For example, if n = 2 then this gives

$$\cos(2\theta) = \cos^2 \theta - \sin^2 \theta$$
 and
 $\sin(2\theta) = 2\cos\theta\sin\theta.$

39. Example 62

(a)

$$(f \circ g)(x) = f(g(x)) = (2x - x^2)^3,$$

 $(g \circ f)(x) = g(f(x)) = 2x^3 - x^6.$

(b) No; $f \circ g \neq g \circ f$.

40. Example 63

(a) See Figure 4.

(b) $\{y, z\}$

Figure 4

- (a) See Figure 5.
- (b) $s \circ t$ is onto.

- (a) f is not one-to-one; f(-1) = 2 = f(1).
- (b) g is injective; if $x_1, x_2 \in \mathbb{R}$ and $g(x_1) = g(x_2)$ then

$$2x_z^3 - 1 = 2x_2^3 - 1 \Rightarrow x_1 = x_2.$$

- (a) (i) 32
 - (ii) 28
 - (iii) 32
 - (iv) 98
- (b) *H* is not one-to-one; H(40076832) = H(41134032) but 40076832 \neq 41134032.
- 44. Example 70

Figure 5

- (a) f is surjective; for any $y \in \mathbb{R}^+ \cup \{0\}$, the number $-\sqrt{y} \in \mathbb{R}$ satisfies $f(-\sqrt{y}) = y$.
- (b) g is not onto; if g(x) = -1 then x is not in the domain (Z) of g.

45. Example 72 f is one-to-one.

46. Example 73 If $f(x_1) = f(x_2)$ then we find $x_1 = x_2$, so f is one-to-one.

47. Example 74 f^{-1} does not exist because f is not one-to-one. g^{-1} exists and is described by the diagram of Figure 6.

48. Example 75 Say y = g(x) = 2x + 5, so

$$g^{-1}(y) = x = \frac{y-5}{2}.$$

Therefore $g^{-1}(x) = \frac{x-5}{2}$.

50. arcsin : $(-1, 1) \rightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$; see Figure 7.

51. Example 78 See Figure 8.

52. Example 79 If z = ax + by + d then (0, 0, 5) gives d = 5 and then (0, 1, 1) is used to find b = -4. Next, (1, 3, 2) yields a = 9, so the equation of the plane is

$$z = 9x - 4y + 5.$$

Figure 6

- 53. Example 80 See Figure 9.
- 54. Example 81 See Figure 10.
- 55. Example 82 See Figure 11.

56. Example 83 Say z = mx + ny + c. We have $\Delta z = 1 - 0 = 1$. Considering when y = 0,

$$0 = -2x + 5 \Rightarrow x = 5/2,$$

$$0 = -2x + 2 \Rightarrow x = 1,$$

so $\Delta x = 1 - 5/2 = -3/2$, giving $m = \frac{\Delta z}{\Delta x} = \frac{-2}{3}$.

Similarly, from considering x = 0, we get $\Delta y = 2 - 5 = -3 \Rightarrow n = \frac{-1}{3}$.

Therefore $z = \frac{-2}{3}x - \frac{1}{3}y + c$. When z = 0, we then get c = 5/3, so the equation of the plane is

$$z = \frac{-2}{3}x - \frac{1}{3}y + \frac{5}{3}.$$

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11