MATH7501 Assignment Solutions

These solutions produced by Mitchell Griggs.

Unit 3

1. Example 89 If $n=6$ then $1+2+3+4+5=15$ but there is no integer k where $6 k=15$.

2. Example 90

(a) T
(b) T
(c) F
3. Example 91 If a and b are rational numbers then $a=\frac{m}{n}$ and $b=\frac{p}{q}$, where $m, n, p, q \in \mathbb{Z}, n \neq 0$, and $q \neq 0$. The product

$$
a b=\frac{m p}{n q}
$$

is also rational, since $m p, n q \in \mathbb{Z}$ and $n q \neq 0$.
4. Example 92 Writing $r=\frac{m}{n}$ for $m, n \in \mathbb{Z}$ and $n \neq 0$, let $s=\frac{-m}{n}$. Now conclude that $r+s=0$ and $s+r=0$.
5. Example 94 Writing $r=\frac{m}{n}$ for $m, n \in \mathbb{Z}-\{0\}$, define $r^{-1}=\frac{n}{m}$. Conclude that $r \cdot r^{-1}=1$ and $r^{-1} \cdot r=1$.

6. Example 95

(a) $\mathrm{T} ; 72=4 k$ for some integer k.
(b) F ; there is no $k \in \mathbb{Z}$ where $24=48 k$.
(c) F ; there is no $k \in \mathbb{Z}$ where $5=0 k$.
(d) $\mathrm{T} ; 9=(-3) \times(-3)$.
7. Yes; for any $a, b \in \mathbb{Z}, 2 a(3 b+3)=6(a b+a)$.
8. No; if $a=1$ and $b=0$ then $2 a(4 b+1)=2$.
9. Example 96
(a) $5440=2^{6} \times 5 \times 17$
(b) $43560=2^{3} \times 3^{2} \times 5 \times 11^{2}$
10. There exist $m, n \in \mathbb{Z}$ such that $a=k m$ and $b=k n$, so

$$
a+b=k(m+n),
$$

giving $k \mid(a+b)$ since $m+n \in \mathbb{Z}$.
11. Example 97
(a) F
(b) T
(c) F
12. Example 98
(a) $102=11 \times 9+3$
(b) $-4=5 \times(-1)+1$
13. Example 99

$$
\begin{aligned}
a b & =(4 x+1)(4 y+1) \\
& =16 x y+4 x+4 y+1 \\
& =4 m+1,
\end{aligned}
$$

where $m=4 x y+x+4$.
14. Example 100 By definition,

$$
u=d \cdot p+v \text { and } w=d \cdot q+x
$$

for some $p, q \in \mathbb{Z}$. Therefore
(a) $u+w=d \cdot(p+q)+(v+x)$, so $u+w \equiv v+x(\bmod d)$, and
(b) $u w=d \cdot(d p q+p x+q v)+x v$, so $u w \equiv x v(\bmod d)$.
15. Example 101 Suppose that x is an odd integer, so $x=2 y+1$ for some $y \in \mathbb{Z}$. Now

$$
x^{2}=4 y(y+1)+1 .
$$

One of y and $y+1$ is even, so there is some $z \in \mathbb{Z}$ such that $y(y+1)=2 z$. Therefore

$$
x^{2}=4 \cdot 2 z+1=8 m+1,
$$

where $m=z$.

16. Example 104

(a) For every x in the set of squares, x is a rectangle.
(b) Every integer is a real number.
17. Example 106
(a) $\exists x \in \mathbb{R}$ such that $x \in \mathbb{Q}$.
(b) There is an elephant that is white.

18. Example 108(b)

$$
\forall x \in \mathbb{R}, \text { if } x \in \mathbb{Z} \text { then } x \in \mathbb{Q} \text {. }
$$

19. Example 111 Suppose that $r=\frac{a}{b}$ is a nonzero, rational number, so $a, b \in \mathbb{Z}-\{0\}$, and suppose that $s \in \mathbb{R}-\mathbb{Q}$. Towards a contradiction, suppose $r s \in \mathbb{Q}$. Therefore $r s=\frac{m}{n}$ for some $n \in \mathbb{Z}-\{0\}$ and $m \in \mathbb{Z}$, but $r \neq 0$ and $s \neq 0$ so $m \neq 0$.

Now $s=\frac{m}{n r}=\frac{m b}{n a}$, but $m b \in \mathbb{Z}$ and $n a \in \mathbb{Z}-\{0\}$, so $s \in \mathbb{Q}$. This contradiction concludes our proof.
20. Example 112 Suppose that $p>3$ is prime. Towards a contradiction, suppose that p is not $\pm 1(\bmod 6)$. Therefore p is $0,2,4$, or $3(\bmod 6)$.

If p is 0,2 , or $4(\bmod 6)$, then it is even (and greater than 3$)$ so can't be prime. The only remaining possibility is $p \equiv 3(\bmod 6)$, so $p=6 k+3$ for some $k \in \mathbb{Z}$. However, $p>3$ so $k \geqslant 1$ (meaning that $2 k+1>1$), and therefore $p=3(2 k+1)$ is not prime.
21. We want to show that

$$
\begin{equation*}
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{1}
\end{equation*}
$$

for every $n \in \mathbb{N}$.

When $n=1$,

$$
\sum_{i=1}^{n} i^{2}=1 \text { and } \frac{n(n+1)(2 n+1)}{6}=\frac{1 \cdot 2 \cdot 3}{6}=1
$$

so the formula holds when $n=1$.
Assume that Equation (1) holds when $n=k \in \mathbb{N}$.
If we now consider the next value, $n=k+1$, then

$$
\begin{aligned}
\sum_{i=1}^{k+1} i^{2} & =(k+1)^{2}+\sum_{i=1}^{k} i^{2}=(k+1)^{2}+\frac{k(k+1)(2 k+1)}{6} \\
& =(k+1)\left[\frac{6 k+6+k(2 k+1)}{6}\right]=(k+1)\left[\frac{4 k+6+k(2 k+3)}{6}\right] \\
& =(k+1)\left[\frac{2(2 k+3)+k(2 k+3)}{6}\right]=(k+1)\left[\frac{(k+2)(2 k+3)}{6}\right] \\
& =\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}=\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

so Equation (1) holds when $n=k+1$. We have therefore proved Equation (1), for every $n \in \mathbb{N}$, with mathematical induction.
22. If $n=1$ then $1+2^{2 n-1}=1+2^{1}=3$, which is divisible by 3 . Now suppose that

$$
3 \mid\left(1+2^{2 n-1}\right),
$$

so $1+2^{2 n-1}=3 k$ for some $k \in \mathbb{Z}$. Then

$$
\begin{aligned}
1+2^{2(n+1)-1} & =1+2^{2 n-1+2}=1+4 \cdot\left(2^{2 n-1}+1-1\right) \\
& =1+4(3 k-1)=1+12 k-4=12 k-3
\end{aligned}
$$

which is divisible by 3 . We have shown the result, by mathematical induction.
23. Example 113 Consider the equation

$$
\begin{equation*}
\sum_{i=1}^{n}(2 i-1)=n^{2} \tag{2}
\end{equation*}
$$

When $n=1$, each side of Equation (2) is 1 . Now suppose that Equation (2) holds for some $n \in \mathbb{N}$. From this assumption, it follows that

$$
\sum_{i=1}^{n+1}(2 i-1)=[2(n+1)-1]+n^{2}=2 n+1+n^{2}=(n+1)^{2}
$$

so Equation (2) holds for all $n \in \mathbb{N}$, by mathematical induction.
24. Example 114 Consider the equation

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{1}{j(j+1)}=\frac{n}{n+1} \tag{3}
\end{equation*}
$$

When $n=1$, the equation holds, with each side being $1 / 2$. Now assume that Equation (3) holds for some $n \in \mathbb{N}$. We then have

$$
\begin{aligned}
\sum_{j=1}^{n+1} \frac{1}{j(j+1)} & =\frac{1}{(n+1)(n+2)}+\sum_{j=1}^{n} \frac{1}{j(j+1)}=\frac{1}{(n+1)(n+2)}+\frac{n}{(n+1)} \\
& =\frac{1+n(n+2)}{(n+1)(n+2)}=\frac{1+n^{2}+2 n}{(n+1)(n+2)}=\frac{n+1}{n+2}
\end{aligned}
$$

so Equation (3) holds for all $n \in \mathbb{N}$, by mathematical induction.
25. Example 115 When $t=1$,

$$
\sum_{j=1}^{t} 2^{j-1}=2^{0}=1=2^{1}-1=2^{t}-1
$$

Supposing

$$
\sum_{j=1}^{t} 2^{j-1}=2^{t}-1
$$

then

$$
\sum_{j=1}^{t+1} 2^{j}=2^{(t+1)-1}+\sum_{j=1}^{t} 2^{j-1}=2^{t}+2^{t}-1=2 \cdot 2^{t}-1=2^{t+1}-1
$$

showing the result, by mathematical induction.
26. See Table 1.
27. See Table 2. The statement is a contradiction.
26. See Table 3 for commutativity and Table 4 for associativity.
29. Example 116 If you study then you pass the test.
30. Example 117 If you passed the test then you studied.

p	q	$(p \vee q)$	\wedge	$(\sim p)$
T	T	T	F	F
T	F	T	F	F
F	T	T	T	T
F	F	F	F	T
			\uparrow	

Table 1

p	q	$(p \wedge q)$	\vee	$((\sim p) \vee(p \wedge(\sim q)))$
T	T	T	F	F
T	F	F	F	T
F	T	F	F	F
F	F	F	F	F
			\uparrow	

Table 2

p	q	$(p \wedge q)$	\leftrightarrow	$(q \wedge p)$	$(p \vee q)$	\leftrightarrow	$(q \vee p)$
T	T	T	T	T	T	T	T
T	F	F	T	F	T	T	T
F	T	F	T	F	T	T	T
F	F	F	T	F	F	T	F
			\uparrow			\uparrow	

Table 3

p	q	r	$(p \wedge q) \wedge r$	\leftrightarrow	$q \wedge(p \wedge r)$	$(p \vee q) \vee r$	\leftrightarrow	$p \vee(q \vee r)$
T	T	T	T	T	T	T	T	T
T	T	F	F	T	F	T	T	T
T	F	T	F	T	F	T	T	T
T	F	F	F	T	F	T	T	T
F	T	T	F	T	F	T	T	T
F	T	F	F	T	F	T	T	T
F	F	T	F	T	F	T	T	T
F	F	F	F	T	F	F	T	F

Table 4

p	q	p	\Rightarrow	$(q \wedge(\sim p))$
T	T	T	F	F
T	F	T	F	F
F	T	F	T	T
F	F	F	T	F
			\uparrow	

Table 5
31. Example 118 See Table 5.
32. Suppose that we have some Boolean formula of interest. The Boolean Satisfiability Problem is
"Can we find truth values (for all variables) so that the formula's result is true?"

In other words, is the formula satisfiable?
As an example, $p \wedge(\sim p)$ is unsatisfiable, since it is always false. An example of a formula that is satisfiable is $(p \vee q) \wedge(\sim p)$. This is showb by considering when p is false and q is true.

