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Unit 3

1. Example 89 If n = 6 then 1 + 2 + 3 + 4 + 5 = 15 but there is no integer
k where 6k = 15.

2. Example 90

(a) T

(b) T

(c) F

3. Example 91 If a and b are rational numbers then a = m
n

and b = p
q
,

where m,n, p, q ∈ Z, n 6= 0, and q 6= 0. The product

ab =
mp

nq

is also rational, since mp, nq ∈ Z and nq 6= 0.

4. Example 92 Writing r = m
n

for m,n ∈ Z and n 6= 0, let s = −m
n

. Now
conclude that r + s = 0 and s + r = 0.

5. Example 94 Writing r = m
n

for m,n ∈ Z−{0}, define r−1 = n
m

. Conclude
that r · r−1 = 1 and r−1 · r = 1.

6. Example 95

(a) T; 72 = 4k for some integer k.

(b) F; there is no k ∈ Z where 24 = 48k.

(c) F; there is no k ∈ Z where 5 = 0k.

(d) T; 9 = (−3)× (−3).

7. Yes; for any a, b ∈ Z, 2a(3b + 3) = 6(ab + a).

8. No; if a = 1 and b = 0 then 2a(4b + 1) = 2.

9. Example 96
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(a) 5440 = 26 × 5× 17

(b) 43560 = 23 × 32 × 5× 112

10. There exist m,n ∈ Z such that a = km and b = kn, so

a + b = k(m + n),

giving k|(a + b) since m + n ∈ Z.

11. Example 97

(a) F

(b) T

(c) F

12. Example 98

(a) 102 = 11× 9 + 3

(b) −4 = 5× (−1) + 1

13. Example 99

ab = (4x + 1)(4y + 1)

= 16xy + 4x + 4y + 1

= 4m + 1,

where m = 4xy + x + 4.

14. Example 100 By definition,

u = d · p + v and w = d · q + x,

for some p, q ∈ Z. Therefore

(a) u + w = d · (p + q) + (v + x), so u + w ≡ v + x (mod d), and

(b) uw = d · (dpq + px + qv) + xv, so uw ≡ xv (mod d).

15. Example 101 Suppose that x is an odd integer, so x = 2y + 1 for some
y ∈ Z. Now

x2 = 4y(y + 1) + 1.
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One of y and y + 1 is even, so there is some z ∈ Z such that y(y + 1) = 2z.
Therefore

x2 = 4 · 2z + 1 = 8m + 1,

where m = z.

16. Example 104

(a) For every x in the set of squares, x is a rectangle.

(b) Every integer is a real number.

17. Example 106

(a) ∃ x ∈ R such that x ∈ Q.

(b) There is an elephant that is white.

18. Example 108(b)

∀ x ∈ R, if x ∈ Z then x ∈ Q.

19. Example 111 Suppose that r = a
b

is a nonzero, rational number, so
a, b ∈ Z−{0}, and suppose that s ∈ R−Q. Towards a contradiction, suppose
rs ∈ Q. Therefore rs = m

n
for some n ∈ Z− {0} and m ∈ Z, but r 6= 0 and

s 6= 0 so m 6= 0.

Now s = m
nr

= mb
na

, but mb ∈ Z and na ∈ Z−{0}, so s ∈ Q. This contradiction
concludes our proof.

20. Example 112 Suppose that p > 3 is prime. Towards a contradiction,
suppose that p is not ±1 (mod 6). Therefore p is 0,2,4, or 3 (mod 6).

If p is 0, 2, or 4 (mod 6), then it is even (and greater than 3) so can’t be
prime. The only remaining possibility is p ≡ 3 (mod 6), so p = 6k + 3 for
some k ∈ Z. However, p > 3 so k > 1 (meaning that 2k + 1 > 1), and
therefore p = 3(2k + 1) is not prime.

21. We want to show that

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6
, (1)

for every n ∈ N.
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When n = 1,

n∑
i=1

i2 = 1 and
n(n + 1)(2n + 1)

6
=

1 · 2 · 3
6

= 1,

so the formula holds when n = 1.

Assume that Equation (1) holds when n = k ∈ N.

If we now consider the next value, n = k + 1, then

k+1∑
i=1

i2 = (k + 1)2 +
k∑

i=1

i2 = (k + 1)2 +
k(k + 1)(2k + 1)

6

= (k + 1)

[
6k + 6 + k(2k + 1)

6

]
= (k + 1)

[
4k + 6 + k(2k + 3)

6

]
= (k + 1)

[
2(2k + 3) + k(2k + 3)

6

]
= (k + 1)

[
(k + 2)(2k + 3)

6

]
=

(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6
=

n(n + 1)(2n + 1)

6
,

so Equation (1) holds when n = k + 1. We have therefore proved Equation
(1), for every n ∈ N, with mathematical induction.

22. If n = 1 then 1 + 22n−1 = 1 + 21 = 3, which is divisible by 3. Now
suppose that

3|
(
1 + 22n−1

)
,

so 1 + 22n−1 = 3k for some k ∈ Z. Then

1 + 22(n+1)−1 = 1 + 22n−1+2 = 1 + 4 ·
(
22n−1 + 1− 1

)
= 1 + 4(3k − 1) = 1 + 12k − 4 = 12k − 3,

which is divisible by 3. We have shown the result, by mathematical induction.

23. Example 113 Consider the equation

n∑
i=1

(2i− 1) = n2. (2)

When n = 1, each side of Equation (2) is 1. Now suppose that Equation (2)
holds for some n ∈ N. From this assumption, it follows that

n+1∑
i=1

(2i− 1) = [2(n + 1)− 1] + n2 = 2n + 1 + n2 = (n + 1)2,
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so Equation (2) holds for all n ∈ N, by mathematical induction.

24. Example 114 Consider the equation

n∑
j=1

1

j(j + 1)
=

n

n + 1
. (3)

When n = 1, the equation holds, with each side being 1/2. Now assume that
Equation (3) holds for some n ∈ N. We then have

n+1∑
j=1

1

j(j + 1)
=

1

(n + 1)(n + 2)
+

n∑
j=1

1

j(j + 1)
=

1

(n + 1)(n + 2)
+

n

(n + 1)

=
1 + n(n + 2)

(n + 1)(n + 2)
=

1 + n2 + 2n

(n + 1)(n + 2)
=

n + 1

n + 2
,

so Equation (3) holds for all n ∈ N, by mathematical induction.

25. Example 115 When t = 1,

t∑
j=1

2j−1 = 20 = 1 = 21 − 1 = 2t − 1.

Supposing
t∑

j=1

2j−1 = 2t − 1,

then

t+1∑
j=1

2j = 2(t+1)−1 +
t∑

j=1

2j−1 = 2t + 2t − 1 = 2 · 2t − 1 = 2t+1 − 1,

showing the result, by mathematical induction.

26. See Table 1.

27. See Table 2. The statement is a contradiction.

26. See Table 3 for commutativity and Table 4 for associativity.

29. Example 116 If you study then you pass the test.

30. Example 117 If you passed the test then you studied.
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p q (p ∨ q) ∧ (∼ p)
T T T F F
T F T F F
F T T T T
F F F F T

↑

Table 1

p q (p ∧ q) ∨ ((∼ p) ∨ (p ∧ (∼ q)))
T T T F F
T F F F T
F T F F F
F F F F F

↑

Table 2

p q (p ∧ q) ↔ (q ∧ p) (p ∨ q) ↔ (q ∨ p)
T T T T T T T T
T F F T F T T T
F T F T F T T T
F F F T F F T F

↑ ↑

Table 3

p q r (p ∧ q) ∧ r ↔ q ∧ (p ∧ r) (p ∨ q) ∨ r ↔ p ∨ (q ∨ r)
T T T T T T T T T
T T F F T F T T T
T F T F T F T T T
T F F F T F T T T
F T T F T F T T T
F T F F T F T T T
F F T F T F T T T
F F F F T F F T F

↑ ↑

Table 4
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p q p ⇒ (q ∧ (∼ p))
T T T F F
T F T F F
F T F T T
F F F T F

↑

Table 5

31. Example 118 See Table 5.

32. Suppose that we have some Boolean formula of interest. The Boolean
Satisfiability Problem is

“Can we find truth values (for all variables) so that the formula’s
result is true?”

In other words, is the formula satisfiable?

As an example, p∧ (∼ p) is unsatisfiable, since it is always false. An example
of a formula that is satisfiable is (p∨q)∧ (∼ p). This is showb by considering
when p is false and q is true.
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