MATH7501 Assignment Solutions

These solutions produced by Mitchell Griggs.

Unit 3

1. Example 89 If n = 6 then 1 + 2 + 3 + 4 + 5 = 15 but there is no integer k where 6k = 15.

- 2. Example 90
- (a) T
- (b) T
- (c) F

3. Example 91 If a and b are rational numbers then $a = \frac{m}{n}$ and $b = \frac{p}{q}$, where $m, n, p, q \in \mathbb{Z}, n \neq 0$, and $q \neq 0$. The product

$$ab = \frac{mp}{nq}$$

is also rational, since $mp, nq \in \mathbb{Z}$ and $nq \neq 0$.

4. Example 92 Writing $r = \frac{m}{n}$ for $m, n \in \mathbb{Z}$ and $n \neq 0$, let $s = \frac{-m}{n}$. Now conclude that r + s = 0 and s + r = 0.

5. Example 94 Writing $r = \frac{m}{n}$ for $m, n \in \mathbb{Z} - \{0\}$, define $r^{-1} = \frac{n}{m}$. Conclude that $r \cdot r^{-1} = 1$ and $r^{-1} \cdot r = 1$.

6. Example 95

- (a) T; 72 = 4k for some integer k.
- (b) F; there is no $k \in \mathbb{Z}$ where 24 = 48k.
- (c) F; there is no $k \in \mathbb{Z}$ where 5 = 0k.
- (d) T; $9 = (-3) \times (-3)$.
- 7. Yes; for any $a, b \in \mathbb{Z}$, 2a(3b+3) = 6(ab+a).
- 8. No; if a = 1 and b = 0 then 2a(4b + 1) = 2.
- 9. Example 96

- (a) $5440 = 2^6 \times 5 \times 17$
- **(b)** $43560 = 2^3 \times 3^2 \times 5 \times 11^2$
- **10.** There exist $m, n \in \mathbb{Z}$ such that a = km and b = kn, so

$$a+b=k(m+n),$$

giving k|(a+b) since $m+n \in \mathbb{Z}$.

- 11. Example 97
- (a) F
- (b) T
- (c) F
- 12. Example 98
- (a) $102 = 11 \times 9 + 3$
- **(b)** $-4 = 5 \times (-1) + 1$
- 13. Example 99

$$ab = (4x + 1)(4y + 1)$$

= 16xy + 4x + 4y + 1
= 4m + 1,

where m = 4xy + x + 4.

14. Example 100 By definition,

$$u = d \cdot p + v$$
 and $w = d \cdot q + x$,

for some $p, q \in \mathbb{Z}$. Therefore

- (a) $u + w = d \cdot (p + q) + (v + x)$, so $u + w \equiv v + x \pmod{d}$, and
- (b) $uw = d \cdot (dpq + px + qv) + xv$, so $uw \equiv xv \pmod{d}$.

15. Example 101 Suppose that x is an odd integer, so x = 2y + 1 for some $y \in \mathbb{Z}$. Now

$$x^2 = 4y(y+1) + 1.$$

One of y and y + 1 is even, so there is some $z \in \mathbb{Z}$ such that y(y + 1) = 2z. Therefore

$$x^2 = 4 \cdot 2z + 1 = 8m + 1,$$

where m = z.

16. Example 104

- (a) For every x in the set of squares, x is a rectangle.
- (b) Every integer is a real number.

17. Example 106

- (a) $\exists x \in \mathbb{R}$ such that $x \in \mathbb{Q}$.
- (b) There is an elephant that is white.

18. Example 108(b)

$$\forall x \in \mathbb{R}, \text{ if } x \in \mathbb{Z} \text{ then } x \in \mathbb{Q}.$$

19. Example 111 Suppose that $r = \frac{a}{b}$ is a nonzero, rational number, so $a, b \in \mathbb{Z} - \{0\}$, and suppose that $s \in \mathbb{R} - \mathbb{Q}$. Towards a contradiction, suppose $rs \in \mathbb{Q}$. Therefore $rs = \frac{m}{n}$ for some $n \in \mathbb{Z} - \{0\}$ and $m \in \mathbb{Z}$, but $r \neq 0$ and $s \neq 0$ so $m \neq 0$.

Now $s = \frac{m}{nr} = \frac{mb}{na}$, but $mb \in \mathbb{Z}$ and $na \in \mathbb{Z} - \{0\}$, so $s \in \mathbb{Q}$. This contradiction concludes our proof.

20. Example 112 Suppose that p > 3 is prime. Towards a contradiction, suppose that p is not $\pm 1 \pmod{6}$. Therefore p is 0,2,4, or 3 (mod 6).

If p is 0, 2, or 4 (mod 6), then it is even (and greater than 3) so can't be prime. The only remaining possibility is $p \equiv 3 \pmod{6}$, so p = 6k + 3 for some $k \in \mathbb{Z}$. However, p > 3 so $k \ge 1$ (meaning that 2k + 1 > 1), and therefore p = 3(2k + 1) is not prime.

21. We want to show that

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6},\tag{1}$$

for every $n \in \mathbb{N}$.

When n = 1,

$$\sum_{i=1}^{n} i^2 = 1 \text{ and } \frac{n(n+1)(2n+1)}{6} = \frac{1 \cdot 2 \cdot 3}{6} = 1,$$

so the formula holds when n = 1.

Assume that Equation (1) holds when $n = k \in \mathbb{N}$.

If we now consider the next value, n = k + 1, then

$$\begin{split} \sum_{i=1}^{k+1} i^2 &= (k+1)^2 + \sum_{i=1}^k i^2 = (k+1)^2 + \frac{k(k+1)(2k+1)}{6} \\ &= (k+1) \left[\frac{6k+6+k(2k+1)}{6} \right] = (k+1) \left[\frac{4k+6+k(2k+3)}{6} \right] \\ &= (k+1) \left[\frac{2(2k+3)+k(2k+3)}{6} \right] = (k+1) \left[\frac{(k+2)(2k+3)}{6} \right] \\ &= \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} = \frac{n(n+1)(2n+1)}{6}, \end{split}$$

so Equation (1) holds when n = k + 1. We have therefore proved Equation (1), for every $n \in \mathbb{N}$, with mathematical induction.

22. If n = 1 then $1 + 2^{2n-1} = 1 + 2^1 = 3$, which is divisible by 3. Now suppose that

$$3|(1+2^{2n-1})|,$$

so $1 + 2^{2n-1} = 3k$ for some $k \in \mathbb{Z}$. Then

$$1 + 2^{2(n+1)-1} = 1 + 2^{2n-1+2} = 1 + 4 \cdot (2^{2n-1} + 1 - 1)$$

= 1 + 4(3k - 1) = 1 + 12k - 4 = 12k - 3,

which is divisible by 3. We have shown the result, by mathematical induction.

23. Example 113 Consider the equation

$$\sum_{i=1}^{n} (2i-1) = n^2.$$
(2)

When n = 1, each side of Equation (2) is 1. Now suppose that Equation (2) holds for some $n \in \mathbb{N}$. From this assumption, it follows that

$$\sum_{i=1}^{n+1} (2i-1) = [2(n+1)-1] + n^2 = 2n+1+n^2 = (n+1)^2,$$

so Equation (2) holds for all $n \in \mathbb{N}$, by mathematical induction.

24. Example 114 Consider the equation

$$\sum_{j=1}^{n} \frac{1}{j(j+1)} = \frac{n}{n+1}.$$
(3)

When n = 1, the equation holds, with each side being 1/2. Now assume that Equation (3) holds for some $n \in \mathbb{N}$. We then have

$$\sum_{j=1}^{n+1} \frac{1}{j(j+1)} = \frac{1}{(n+1)(n+2)} + \sum_{j=1}^{n} \frac{1}{j(j+1)} = \frac{1}{(n+1)(n+2)} + \frac{n}{(n+1)}$$
$$= \frac{1+n(n+2)}{(n+1)(n+2)} = \frac{1+n^2+2n}{(n+1)(n+2)} = \frac{n+1}{n+2},$$

so Equation (3) holds for all $n \in \mathbb{N}$, by mathematical induction.

25. Example 115 When t = 1,

$$\sum_{j=1}^{t} 2^{j-1} = 2^0 = 1 = 2^1 - 1 = 2^t - 1.$$

Supposing

$$\sum_{j=1}^{t} 2^{j-1} = 2^t - 1,$$

then

$$\sum_{j=1}^{t+1} 2^j = 2^{(t+1)-1} + \sum_{j=1}^t 2^{j-1} = 2^t + 2^t - 1 = 2 \cdot 2^t - 1 = 2^{t+1} - 1,$$

showing the result, by mathematical induction.

- **26.** See Table 1.
- **27.** See Table 2. The statement is a contradiction.
- 26. See Table 3 for commutativity and Table 4 for associativity.
- **29. Example 116** If you study then you pass the test.
- 30. Example 117 If you passed the test then you studied.

p	q	$(p \lor q)$	\wedge	$(\sim p)$
Т	Т	Т	F	F
Т	F	Т	\mathbf{F}	F
\mathbf{F}	Т	Т	Т	Т
\mathbf{F}	F	F	F	Т
			\uparrow	

p	q	$(p \land q)$	\vee	$((\sim p) \lor (p \land (\sim q)))$
Т	Т	Т	F	F
Т	F	F	F	Т
\mathbf{F}	Т	F	\mathbf{F}	F
\mathbf{F}	F	F	F	\mathbf{F}
			\uparrow	

p	q	$(p \land q)$	\leftrightarrow	$(q \wedge p)$	$(p \lor q)$	\leftrightarrow	$(q \lor p)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т	Т	Т
F	Т	F	Т	F	Т	Т	Т
F	F	F	Т	F	F	Т	F
			\uparrow			\uparrow	

p	q	r	$(p \wedge q) \wedge r$	\leftrightarrow	$q \wedge (p \wedge r)$	$(p \lor q) \lor r$	\leftrightarrow	$p \lor (q \lor r)$
Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	\mathbf{F}	Т	Т	Т
Т	F	Т	F	Т	F	Т	Т	Т
Т	F	F	F	Т	F	Т	Т	Т
\mathbf{F}	Т	Т	F	Т	F	Т	Т	Т
\mathbf{F}	Т	F	F	Т	F	Т	Т	Т
\mathbf{F}	F	Т	F	Т	F	Т	Т	Т
\mathbf{F}	F	F	F	Т	F	F	Т	\mathbf{F}
				\uparrow			\uparrow	

Table 4

p	q	p	\Rightarrow	$(q \land (\sim p))$		
Т	Т	Т	F	F		
Т	F	Т	F	\mathbf{F}		
\mathbf{F}	Т	\mathbf{F}	Т	Т		
\mathbf{F}	F	\mathbf{F}	Т	\mathbf{F}		
			\uparrow			
Table 5						

31. Example 118 See Table 5.

32. Suppose that we have some Boolean formula of interest. The *Boolean Satisfiability Problem is*

"Can we find truth values (for all variables) so that the formula's result is true?"

In other words, is the formula *satisfiable*?

As an example, $p \wedge (\sim p)$ is *unsatisfiable*, since it is always false. An example of a formula that is satisfiable is $(p \lor q) \land (\sim p)$. This is showb by considering when p is false and q is true.