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Unit 4

1. Example 119 ai = (ii) (−1)i = (−i)i, i = 1, 2, 3, . . . , is one such se-
quence.

2. Example 120

n∑
i=1

1

i(i+ 1)

3. Example 124

F8 =
1√
5

(
1 +
√

5

2

)8

− 1√
5

(
1−
√

5

2

)8

=
1√
5

1

28

[
8∑
i=0

(
8

i

)((√
5
)i
−
(
−
√

5
)i)]

=
1

16
√

5

[√
5 + 7

(√
5
)3

+ 7
(√

5
)5

+
(√

5
)7]

=
336

16
= 21,

which agrees with Example 123.

4. For any n ∈ N, if an = 5 · 2n then it follows that

an = 5 · 2n−1 · 2 = 2 ·
(
5 · 2n−1

)
= 2an−1.

5. The Catalan Numbers are C0, C1, C2, . . ., where

Cn =
1

n+ 1

(
2n

n

)
,

for each n = 0, 1, 2, . . ..

These numbers are characterised in many equivalent ways. For example, Cn
is the number of ways that n pairs of parentheses can be correctly ordered
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(with one open bracket occurring for each closed bracket, and occurring before
that closed bracket).

With this interpretation, suppose that we know C0, C1, . . . , Cn, and we have
n pairs of parentheses. If we now need to insert a new (n + 1)th pair, then
we counting how this may be done leads to the formula

Cn+1 =
n∑
i=0

CiCn−i.

Other formulae are possible.

6. Example 125(4) an = rn for each n = 0, 1, 2, . . ..

(1) When r = 1/2

(2) When r = 1, limn→∞ an = 1.

(3) When r = 2, {an} diverges.

7. Example 126 an = sin(log(n))/n for each n = 1, 2, 3, . . ..

For each n > 1,
−1 6 sin(log(n)) 6 1

, so
−1

n
6

sin(log(n))

n
6

1

n
,

and both −1
n
→ 0 and 1

n
→ 0 as n → ∞, so limn→∞ an = 0, by the Squeeze

Theorem.

8. One way to show why limn→∞ n
1/n = 1 is by writing

n1/n = exp(log(n)/n) = elog(n)/n,

and knowing that you can apply the following steps:

lim
n→∞

n1/n = lim
n→∞

(
exp

(
log(n)

n

))
= exp

(
lim
n→∞

log(n)

n

)
= exp(0) = 1.
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9. Example 128 Consider the partial sums. That is,

∞∑
n=0

1

(n+ 1)(n+ 2)
= lim

n→∞
Sn,

where

Sn =
n−1∑
k=0

1

(k + 1)(k + 2)
=

n∑
k=1

1

k(k + 1)
.

In Assignment 2, you may have shown (with mathematical induction) that

n∑
k=1

1

k(k + 1)
=

n

n+ 1
,

so

lim
n→∞

Sn = lim
n→∞

(
n

n+ 1

)
= lim

n→∞

(
1− 1

(n+ 1)

)
= 1.

10. The Harmonic Series is
∞∑
n=1

1

n
.

We can write this as

∞∑
n=1

1

n
= 1 +

1

2
+

4∑
n=3

1

n
+

8∑
n=5

1

n
+

16∑
n=9

1

n
+ · · ·

> 1 +
1

2
+ 2 · 1

4
+ 4 · 1

8
+ 8 · 1

16
+ · · ·

= 1 +
1

2
+

1

2
+

1

2
+

1

2
+ · · · ,

so the series
∑∞

n=1
1
n

diverges, by the comparison test.

11. Example 129 with 7%

∞∑
n=1

100(0.93)n =
100

1− 0.93
≈ 1428.57.

12.a This limit is zero.

12.b limn→∞(π/4)n = 0 since |π/4| < 1.
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12.c

lim
n→∞

n3 + 3

n3 + n2 − 1
= lim

n→∞

1
n

+ 3
n3

1 + 1
n
− 1

n3

=
0

1
= 0.

12.d This solution uses Taylor Series:

n sin
π

n
= n ·

(
π

n
− (π/n)3

3!
+

(π/n)5

5!
− · · ·

)
→ π

as n→∞.

12.e

1

n
− 1

(n+ 1)
=
n+ 1− n
n2 + n

=
1

n2 + n
→ 0

as n→∞.

12.f
lim
n→∞

(√
n+ 1−

√
n+ 2

)
= lim

n→∞

(√
n−
√
n+ 1

)
,

but

√
n−
√
n+ 1 =

(√
n−
√
n+ 1

) (√n+
√
n+ 1

)(√
n+
√
n+ 1

) =
n− n− 1
√
n+
√
n+ 1

=
−1

√
n+
√
n+ 1

>
−1

2
√
n+ 1

→ 0,

so
√
n−
√
n+ 1→ 0 by the Squeeze Theorem and the Comparison Test.

12.g cos2(nπ) = 1 for all n ∈ N and so

∞∑
n=1

cos2(nπ)

n!
=
∞∑
n=1

1

n!
=
∞∑
n=1

1n

n!
= e1.

12.h

∞∑
n=2

(
1

n− 1
− 1

n+ 1

)
=
∞∑
n=2

(n+ 1)− (n− 1)

n2 − 1

=
∞∑
n=2

2

n2 − 1
= 2

∞∑
n=2

1

n2 − 1
,
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which converges by the Comparison Test with a p-series (when p = 2).

12.i

∞∑
n=1

n+ sinn

n4 + n
=
∞∑
n=1

1

n3 + 1
+
∞∑
n=1

sinn

n4 + n
,

which are both convergent series;

∞∑
n=1

1

n3 + 1
6

∞∑
n=1

1

n3

converges (p-series) and
∞∑
n=1

sinn

n4 + n

(absolutely) converges (Comparison Test with a p-series), so

∞∑
n=1

n+ sinn

n4 + n

converges.

12.j limn→∞
nn

n!
=∞ so

∞∑
n=1

nn

n!

diverges since its terms don’t approach zero.

12.k The outer circle has diameter 1, so the diagonals of the outer circle are
both 1, giving the side length of the inner square as

√
1/2, which is also the

diameter of the inner circle, and so on. The sum of the areas of the squares
is

12 +
(√

1/2
)2

+
(√

1/4
)2

+
(√

1/8
)2

+ · · · =
∞∑
i=0

1

2i
= 2.

The sum of the areas of the circles is

π (1/2)2 + π

(
1

2

√
1/2

)2

+ · · · =
∞∑
i=1

π

(
1

2

(
1

2i

))2

=
π

2
.

The difference is

2− π

2
=

4− π
2
≈ 0.43.

6



12.l By the Ratio Test,

lim
n→∞

∣∣F−1n+1 ÷ F−1n

∣∣ = lim
n→∞

∣∣∣∣ FnFn+1

∣∣∣∣ =
1

ϕ

(where ϕ = 1+
√
5

2
), since limn→∞

Fn+1

Fn
= ϕ. As 1

ϕ
< 1,

∞∑
n=0

F−1n

converges by the Ratio Test.

12.m

lim
n→∞

P (k;n, pn) = lim
n→∞

(
n

k

)
pkn(1− pn)n−k

= lim
n→∞

n!

(n− k)!k!

(
λ

n

)k (
1− λ

n

)n−k
= lim

n→∞

n(n− 1) · · · (n− k)(n− k − 1) · · · 1
nk

λk

k!
(1− λ/n)n−k

= lim
n→∞

(
nk + [lower-order terms]

nk

)
λk

k!
(1− λ/n)n−k

= 1 · λ
k

k!
lim
n→∞

(1− λ/n)n−k

=
λk

k!
lim
n→∞

(1− λ/n)−k lim
n→∞

(1− λ/n)n

=
λk

k!
e−λ.

13. The function f is as described, defined for x = 0, 1, . . . , n1. As n1 = pn3,
and p ∈ (0, 1), it follows that when n3 →∞ then n1 →∞.
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