MATH7501 Assignment Solutions

These solutions produced by Mitchell Griggs.

Unit 4

1. Example $119 a_{i}=\left(i^{i}\right)(-1)^{i}=(-i)^{i}, i=1,2,3, \ldots$, is one such sequence.
2. Example 120

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}
$$

3. Example 124

$$
\begin{aligned}
F_{8} & =\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{8}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{8} \\
& =\frac{1}{\sqrt{5}} \frac{1}{2^{8}}\left[\sum_{i=0}^{8}\binom{8}{i}\left((\sqrt{5})^{i}-(-\sqrt{5})^{i}\right)\right] \\
& =\frac{1}{16 \sqrt{5}}\left[\sqrt{5}+7(\sqrt{5})^{3}+7(\sqrt{5})^{5}+(\sqrt{5})^{7}\right] \\
& =\frac{336}{16}=21,
\end{aligned}
$$

which agrees with Example 123.
4. For any $n \in \mathbb{N}$, if $a_{n}=5 \cdot 2^{n}$ then it follows that

$$
a_{n}=5 \cdot 2^{n-1} \cdot 2=2 \cdot\left(5 \cdot 2^{n-1}\right)=2 a_{n-1} .
$$

5. The Catalan Numbers are $C_{0}, C_{1}, C_{2}, \ldots$, where

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

for each $n=0,1,2, \ldots$.
These numbers are characterised in many equivalent ways. For example, C_{n} is the number of ways that n pairs of parentheses can be correctly ordered
(with one open bracket occurring for each closed bracket, and occurring before that closed bracket).

With this interpretation, suppose that we know $C_{0}, C_{1}, \ldots, C_{n}$, and we have n pairs of parentheses. If we now need to insert a new $(n+1)$ th pair, then we counting how this may be done leads to the formula

$$
C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i} .
$$

Other formulae are possible.
6. Example 125(4) $a_{n}=r^{n}$ for each $n=0,1,2, \ldots$.
(1) When $r=1 / 2$
(2) When $r=1, \lim _{n \rightarrow \infty} a_{n}=1$.
(3) When $r=2,\left\{a_{n}\right\}$ diverges.
7. Example $126 a_{n}=\sin (\log (n)) / n$ for each $n=1,2,3, \ldots$.

For each $n \geqslant 1$,

$$
-1 \leqslant \sin (\log (n)) \leqslant 1
$$

, so

$$
\frac{-1}{n} \leqslant \frac{\sin (\log (n))}{n} \leqslant \frac{1}{n},
$$

and both $\frac{-1}{n} \rightarrow 0$ and $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$, so $\lim _{n \rightarrow \infty} a_{n}=0$, by the Squeeze Theorem.
8. One way to show why $\lim _{n \rightarrow \infty} n^{1 / n}=1$ is by writing

$$
n^{1 / n}=\exp (\log (n) / n)=e^{\log (n) / n}
$$

and knowing that you can apply the following steps:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n^{1 / n} & =\lim _{n \rightarrow \infty}\left(\exp \left(\frac{\log (n)}{n}\right)\right) \\
& =\exp \left(\lim _{n \rightarrow \infty} \frac{\log (n)}{n}\right)=\exp (0)=1
\end{aligned}
$$

9. Example 128 Consider the partial sums. That is,

$$
\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)}=\lim _{n \rightarrow \infty} S_{n}
$$

where

$$
S_{n}=\sum_{k=0}^{n-1} \frac{1}{(k+1)(k+2)}=\sum_{k=1}^{n} \frac{1}{k(k+1)} .
$$

In Assignment 2, you may have shown (with mathematical induction) that

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{n}{n+1}
$$

so

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)=\lim _{n \rightarrow \infty}\left(1-\frac{1}{(n+1)}\right)=1
$$

10. The Harmonic Series is

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

We can write this as

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n} & =1+\frac{1}{2}+\sum_{n=3}^{4} \frac{1}{n}+\sum_{n=5}^{8} \frac{1}{n}+\sum_{n=9}^{16} \frac{1}{n}+\cdots \\
& \geqslant 1+\frac{1}{2}+2 \cdot \frac{1}{4}+4 \cdot \frac{1}{8}+8 \cdot \frac{1}{16}+\cdots \\
& =1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots
\end{aligned}
$$

so the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, by the comparison test.

11. Example 129 with 7%

$$
\sum_{n=1}^{\infty} 100(0.93)^{n}=\frac{100}{1-0.93} \approx 1428.57
$$

12.a This limit is zero.
12.b $\lim _{n \rightarrow \infty}(\pi / 4)^{n}=0$ since $|\pi / 4|<1$.
12.c

$$
\lim _{n \rightarrow \infty} \frac{n^{3}+3}{n^{3}+n^{2}-1}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}+\frac{3}{n^{3}}}{1+\frac{1}{n}-\frac{1}{n^{3}}}=\frac{0}{1}=0
$$

12.d This solution uses Taylor Series:

$$
n \sin \frac{\pi}{n}=n \cdot\left(\frac{\pi}{n}-\frac{(\pi / n)^{3}}{3!}+\frac{(\pi / n)^{5}}{5!}-\cdots\right) \rightarrow \pi
$$

as $n \rightarrow \infty$.
12.e

$$
\frac{1}{n}-\frac{1}{(n+1)}=\frac{n+1-n}{n^{2}+n}=\frac{1}{n^{2}+n} \rightarrow 0
$$

as $n \rightarrow \infty$.
12.f

$$
\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n+2})=\lim _{n \rightarrow \infty}(\sqrt{n}-\sqrt{n+1})
$$

but

$$
\begin{aligned}
\sqrt{n}-\sqrt{n+1} & =(\sqrt{n}-\sqrt{n+1}) \frac{(\sqrt{n}+\sqrt{n+1})}{(\sqrt{n}+\sqrt{n+1})}=\frac{n-n-1}{\sqrt{n}+\sqrt{n+1}} \\
& =\frac{-1}{\sqrt{n}+\sqrt{n+1}} \geqslant \frac{-1}{2 \sqrt{n+1}} \rightarrow 0
\end{aligned}
$$

so $\sqrt{n}-\sqrt{n+1} \rightarrow 0$ by the Squeeze Theorem and the Comparison Test.
12.g $\cos ^{2}(n \pi)=1$ for all $n \in \mathbb{N}$ and so

$$
\sum_{n=1}^{\infty} \frac{\cos ^{2}(n \pi)}{n!}=\sum_{n=1}^{\infty} \frac{1}{n!}=\sum_{n=1}^{\infty} \frac{1^{n}}{n!}=e^{1}
$$

12.h

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left(\frac{1}{n-1}-\frac{1}{n+1}\right) & =\sum_{n=2}^{\infty} \frac{(n+1)-(n-1)}{n^{2}-1} \\
& =\sum_{n=2}^{\infty} \frac{2}{n^{2}-1}=2 \sum_{n=2}^{\infty} \frac{1}{n^{2}-1}
\end{aligned}
$$

which converges by the Comparison Test with a p-series (when $p=2$).

12.i

$$
\sum_{n=1}^{\infty} \frac{n+\sin n}{n^{4}+n}=\sum_{n=1}^{\infty} \frac{1}{n^{3}+1}+\sum_{n=1}^{\infty} \frac{\sin n}{n^{4}+n}
$$

which are both convergent series;

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}+1} \leqslant \sum_{n=1}^{\infty} \frac{1}{n^{3}}
$$

converges (p-series) and

$$
\sum_{n=1}^{\infty} \frac{\sin n}{n^{4}+n}
$$

(absolutely) converges (Comparison Test with a p-series), so

$$
\sum_{n=1}^{\infty} \frac{n+\sin n}{n^{4}+n}
$$

converges.
12.j $\lim _{n \rightarrow \infty} \frac{n^{n}}{n!}=\infty$ so

$$
\sum_{n=1}^{\infty} \frac{n^{n}}{n!}
$$

diverges since its terms don't approach zero.
12.k The outer circle has diameter 1 , so the diagonals of the outer circle are both 1 , giving the side length of the inner square as $\sqrt{1 / 2}$, which is also the diameter of the inner circle, and so on. The sum of the areas of the squares is

$$
1^{2}+(\sqrt{1 / 2})^{2}+(\sqrt{1 / 4})^{2}+(\sqrt{1 / 8})^{2}+\cdots=\sum_{i=0}^{\infty} \frac{1}{2^{i}}=2
$$

The sum of the areas of the circles is

$$
\pi(1 / 2)^{2}+\pi\left(\frac{1}{2} \sqrt{1 / 2}\right)^{2}+\cdots=\sum_{i=1}^{\infty} \pi\left(\frac{1}{2}\left(\frac{1}{2^{i}}\right)\right)^{2}=\frac{\pi}{2}
$$

The difference is

$$
2-\frac{\pi}{2}=\frac{4-\pi}{2} \approx 0.43
$$

12.1 By the Ratio Test,

$$
\lim _{n \rightarrow \infty}\left|F_{n+1}^{-1} \div F_{n}^{-1}\right|=\lim _{n \rightarrow \infty}\left|\frac{F_{n}}{F_{n+1}}\right|=\frac{1}{\varphi}
$$

(where $\varphi=\frac{1+\sqrt{5}}{2}$), since $\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\varphi$. As $\frac{1}{\varphi}<1$,

$$
\sum_{n=0}^{\infty} F_{n}^{-1}
$$

converges by the Ratio Test.
$12 . \mathrm{m}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left(k ; n, p_{n}\right) & =\lim _{n \rightarrow \infty}\binom{n}{k} p_{n}^{k}\left(1-p_{n}\right)^{n-k} \\
& =\lim _{n \rightarrow \infty} \frac{n!}{(n-k)!k!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
& =\lim _{n \rightarrow \infty} \frac{n(n-1) \cdots(n-k)(n-k-1) \cdots 1}{n^{k}} \frac{\lambda^{k}}{k!}(1-\lambda / n)^{n-k} \\
& =\lim _{n \rightarrow \infty}\left(\frac{n^{k}+[\text { lower-order terms }]}{n^{k}}\right) \frac{\lambda^{k}}{k!}(1-\lambda / n)^{n-k} \\
& =1 \cdot \frac{\lambda^{k}}{k!} \lim _{n \rightarrow \infty}(1-\lambda / n)^{n-k} \\
& =\frac{\lambda^{k}}{k!} \lim _{n \rightarrow \infty}(1-\lambda / n)^{-k} \lim _{n \rightarrow \infty}(1-\lambda / n)^{n} \\
& =\frac{\lambda^{k}}{k!} e^{-\lambda} .
\end{aligned}
$$

13. The function f is as described, defined for $x=0,1, \ldots, n_{1}$. As $n_{1}=p n_{3}$, and $p \in(0,1)$, it follows that when $n_{3} \rightarrow \infty$ then $n_{1} \rightarrow \infty$.
