MATH7501 Assignment Solutions

These solutions produced by Mitchell Griggs.
(a)

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0^{+}}\left(\frac{\sin (x)-x}{x \sin x}\right) \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{-x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots}{x^{2}-\frac{x^{4}}{3!}+\frac{x^{6}}{5!}-\cdots}=0 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 4}(1-\tan (x))(\sec (2 x)) & =\lim _{x \rightarrow \pi / 4} \frac{\cos (x)-\sin (x)}{\cos (x) \cos (2 x)} \\
& =\lim _{x \rightarrow \pi / 4}\left(\frac{1}{\cos (x)}\right) \lim _{x \rightarrow \pi / 4} \frac{\cos (x)-\sin (x)}{\cos (2 x)} \\
& =\sqrt{2} \lim _{x \rightarrow \pi / 4} \frac{-\sin (x)-\cos (x)}{-2 \sin (2 x)}=\sqrt{2} \cdot \frac{1}{\sqrt{2}}=1 .
\end{aligned}
$$

(c)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x\left(2^{1 / x}-1\right) & =\lim _{t \rightarrow 0^{+}} \frac{1}{t}\left(2^{t}-1\right) \\
& =\lim _{t \rightarrow 0^{+}} \frac{2^{t} \log (2)}{1}=\log (2)
\end{aligned}
$$

(d)

$$
\begin{aligned}
\lim _{x \rightarrow 1} x^{\frac{1}{1-x}} & =\lim _{x \rightarrow 1} \exp \left(\frac{1}{1-x} \log (x)\right) \\
& =\exp \left(\lim _{x \rightarrow 1} \frac{\log (x)}{1-x}\right)=\exp \lim _{x \rightarrow 1}\left(\frac{1}{x \cdot(-1)}\right)=e^{-1} .
\end{aligned}
$$

(e) For continuity, we need

$$
2(1)-(1)^{2}=(1)^{2}+k(1)+p
$$

which rearranges to give

$$
k=-p
$$

For differentiability, we also need

$$
2-2(1)=2(1)+k,
$$

so $k=-2$, and then $p=-k=2$.
(f) We need

$$
(1)^{2}+k(1)+p \geqslant 1,
$$

which rearranges to give $k+p \geqslant 0$, and we also need the positive gradient

$$
2 x+k>0, \text { for all } x>1,
$$

so $k>-2$. Notice that f is already increasing when $x<1$.
(g) The function f is the sum of continuous functions $\left(x \mapsto \frac{\sin (x)}{x}\right.$ is continuous when $x \neq 0$), so is also continuous on $\mathbb{R} \backslash\{0\}$.

$$
\begin{aligned}
& f(1)=1+\sin (1)-3<0 \text { and } \\
& f(3)=27+\frac{\sin (3)}{3}-3>27+\frac{-1}{3}-3>17,
\end{aligned}
$$

so by the MVT (Mean-Value Theorem), there exists $\alpha \in(1,3) \subseteq \mathbb{R}$ satisfying $f(\alpha)=17$. To find α where $f(\alpha)=0$, consider the midpoint of $(1,3)$:

$$
f(2)=8+\frac{\sin (2)}{2}-3=5-\frac{\sin (2)}{2}>0 .
$$

Consider the midpoint of $(1,2)$:

$$
f(1.5)>0
$$

Consider the midpoint of $(1,1.5)$:

$$
f(1.25)<0
$$

The next midpoint is 1.375 . Some students may be content with approximating $\alpha \approx 1.375$, but some may continuing the method further, increasing the accuracy of this approximation.

Continuing in this manner, we eventually conclude $\alpha \approx 1.31$.
(h) Showing that the limit has different values along any two lines is sufficient. We give three examples in this solution.

Approaching along the line $y=3 x^{2}$ gives

$$
f(x, y)=\frac{1-e^{0}}{2 x^{2}+9 x^{4}} \rightarrow 0
$$

Approaching along $x=0$ and $y \rightarrow 0^{+}$gives

$$
f(x, y)=\frac{1-e^{-y}}{y^{4}} \rightarrow \infty
$$

Approaching along $x=0$ and $y \rightarrow 0^{-}$gives

$$
f(x, y) \rightarrow-\infty
$$

(i) M^{-1} exists if, and only if, $a d-b c \neq 0$, and is given by

$$
\begin{gathered}
M^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
M M^{-1}=\frac{1}{a d-b c}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
=\frac{1}{a d-b c}\left(\begin{array}{ll}
a d-b c & -a b+a b \\
c d-c d & -b c+a d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I .
\end{gathered}
$$

(j)

$$
A^{-1}=\frac{1}{22}\left(\begin{array}{cc}
3 & -1 \\
-2 & 8
\end{array}\right)
$$

and B^{-1} does not exist since $3 \cdot 4-2 \cdot 6=12-12=0$.
(k)

$$
\begin{aligned}
(A+B)^{T} & =\left[a_{i j}+b_{i j}\right]^{T} \\
& =\left[a_{j i}+b_{j i}\right] \\
& =\left[a_{j i}\right]+\left[b_{j i}\right] \\
& =\left[a_{i j}\right]^{T}+\left[b_{i j}\right]^{T}
\end{aligned}
$$

$$
=A^{T}+B^{T}
$$

and

$$
\begin{aligned}
(A B)^{T} & =\left[a_{i 1} b_{i j}+a_{i 2} b_{2 j}\right]^{T} \\
& =\left[a_{1 i} b_{j 1}+a_{2 i} b_{j 2}\right] \\
& =\left[b_{j 1} a_{1 i}+b_{j 2} a_{2 i}\right] \\
& =\left[b_{j i}\right]\left[a_{j i}\right] \\
& =B^{T} A^{T} .
\end{aligned}
$$

With $C=B+I,(A C)^{-1}$ satisfies

$$
\begin{aligned}
(A C)(A C)^{-1} & =I \\
A(B+I)(A C)^{-1} & =I \\
\Rightarrow(A C)^{-1} & =(B+I)^{-1} A^{-1} \\
& =\left(\begin{array}{ll}
4 & 2 \\
6 & 5
\end{array}\right)^{-1} \frac{1}{22}\left(\begin{array}{cc}
3 & -1 \\
-2 & 8
\end{array}\right) \\
& =\frac{1}{176}\left(\begin{array}{cc}
19 & -21 \\
-26 & 38
\end{array}\right)
\end{aligned}
$$

(1)

$$
\begin{aligned}
A B & =\left(\begin{array}{ll}
30 & 20 \\
24 & 16
\end{array}\right) \text { and } \\
B A & =\left(\begin{array}{cc}
28 & 9 \\
56 & 18
\end{array}\right) .
\end{aligned}
$$

(m)

$$
\begin{aligned}
\operatorname{det}(B A) & =\operatorname{det}(B) \operatorname{det}(A)=\frac{77}{3} \cdot(-39) \\
& =\frac{-3003}{3}=-1001
\end{aligned}
$$

(n) Writing $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right](i, j \in\{1, \ldots, n\})$, the trace of $A+B$ is

$$
\operatorname{tr}(A+B)=\sum_{k=1}^{n}\left(a_{k k}+b_{k k}\right)
$$

$$
\begin{aligned}
& =\left(\sum_{k=1}^{n} a_{k k}\right)+\left(\sum_{k=1}^{n} b_{k k}\right) \\
& =\operatorname{tr}(A)+\operatorname{tr}(B) .
\end{aligned}
$$

(o)

$$
\operatorname{det}\left(\begin{array}{cc}
8-\lambda & 1 \\
2 & 3-\lambda
\end{array}\right)=0
$$

so

$$
\begin{aligned}
0 & =(8-\lambda)(3-\lambda)-2 \\
& =24-11 \lambda+\lambda^{2}-2 \\
& =\lambda^{2}-11 \lambda+22 \\
\Rightarrow \lambda & =\frac{11}{2} \pm \frac{\sqrt{33}}{2} .
\end{aligned}
$$

(p) $A^{\prime} A$ is an $n \times n$ matrix where each entry is 1 , so $\operatorname{tr}\left(A^{\prime} A\right)=n$.
$A A^{\prime}$ is a 1×1 matrix; $A A^{\prime}=(1)$, so $\operatorname{tr}\left(A A^{\prime}\right)=n$.
(q) We have

$$
A B A^{\prime}=\left(\begin{array}{lll}
1 & \cdots & 1
\end{array}\right) B\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

so $(1, \ldots, 1) B=\left[c_{1 j}\right]$ is a $1 \times n$ matrix, with j th entry

$$
c_{1 j}=\sum_{i=1}^{n} 1 \cdot b_{i j}=\sum_{i=1}^{n} b_{i j},
$$

so

$$
A B=\left(\sum_{i=1}^{n} b_{i 1}, \ldots, \sum_{i=1}^{n} b_{i n}\right)
$$

and therefore

$$
A B A^{\prime}=\left(\sum_{i=1}^{n} b_{i 1}\right)+\cdots+\left(\sum_{i=1}^{n} b_{i n}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i j} .
$$

Therefore $b_{i j}=i+j$ gives

$$
\begin{aligned}
A B A^{\prime} & =\left(\sum_{i=1}^{n}(i+1)\right)+\cdots+\left(\sum_{i=1}^{n}(i+n)\right) \\
& =n+2 n+\cdots+n \cdot n+n \sum_{i=1}^{n} i \\
& =n\left(\sum_{i=1}^{n} i+\sum_{i=1}^{n} i\right) \\
& =2 n \sum_{i=1}^{n} i \\
& =2 n \frac{n(n+1)}{2} \\
& =n^{2}(n+1) .
\end{aligned}
$$

(r) With $b_{i j}=i+j^{2}$,

$$
\begin{aligned}
A B A^{\prime} & =\sum_{j=1}^{n} \sum_{i=1}^{n} b_{i j} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n}\left(i+j^{2}\right) \\
& =\sum_{j=1}^{n}\left(n j^{2}+\sum_{i=1}^{n} i\right) \\
& =\sum_{j=1}^{n}\left(n j^{2}+\frac{n(n+1)}{2}\right) \\
& =\frac{n^{2}(n+1)}{2}+n \sum_{j=1}^{n} j^{2} \\
& =\frac{n^{2}(n+1)}{2}+\frac{n^{2}(n+1)(2 n+1)}{6} .
\end{aligned}
$$

(s) Consider $A=I$ and $B=-I$.

