MATH7501 Assignment Solutions

These solutions produced by Mitchell Griggs.
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(e) For continuity, we need

2(1) = ()* = (1)* + k(1) +p,

which rearranges to give
k= —p.
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(f)

(2)

For differentiability, we also need

2 —2(1) = 2(1) + k,
so k= —2, and then p = —k = 2.
We need

(1 + k(1) +p> 1,

which rearranges to give £ + p > 0, and we also need the positive
gradient
20+ k >0, forall x > 1,

so k > —2. Notice that f is already increasing when = < 1.
The function f is the sum of continuous functions (x — Smxﬂ is con-
tinuous when x # 0), so is also continuous on R\ {0}.

f(1) =1+sin(1) —3 < 0 and
sin(3)

—1
f(3)=27+ —3>27+?—3>17,

so by the MVT (Mean-Value Theorem), there exists a € (1,3) C R
satisfying f(«) = 17. To find o where f(a) = 0, consider the midpoint
of (1,3):

f(2) =8+ sin(2) g _5_ sin2(2) S0
Consider the midpoint of (1, 2):
f(1.5) > 0.
Consider the midpoint of (1, 1.5):
£(1.25) < 0.

The next midpoint is 1.375. Some students may be content with ap-
proximating o = 1.375, but some may continuing the method further,
increasing the accuracy of this approximation.

Continuing in this manner, we eventually conclude a ~ 1.31.



(h) Showing that the limit has different values along any two lines is suffi-
cient. We give three examples in this solution.

Approaching along the line y = 32?% gives

1—eY

- 0.

Approaching along x = 0 and y — 0" gives
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f(x,y) =

— OQ.

Approaching along x = 0 and y — 0~ gives

f(z,y) = —o0.

(i) M~ exists if, and only if, ad — bc # 0, and is given by
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and B! does not exist since 3-4—2-6=12—12=0.
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With C = B + I, (AC)™! satisfies
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(n) Writing A = [a;;] and B = [b;;] (i, € {1,...,n}), the trace of A+ B
1s

tr(A+ B) = Z(akk + bi)

k=1
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(p) A’Ais an n x n matrix where each entry is 1, so tr(A’A) = n.
AA'is a 1 x 1 matrix; AA’ = (1), so tr(A4") = n.

(q) We have

ABA'=(1 --- 1)B|: |,

so (1,...,1)B = [¢y;] is a 1 x n matrix, with jth entry

C1j = Zl bl] = Zbijv
i=1 i=1
SO n n
AB = (szl,7zbzn> )
i=1 =1

and therefore

i=1



Therefore b;; =i + j gives
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(s) Consider A=1 and B = —1I.



