1. Consider the matrix:

$$
A=\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]
$$

and the vectors,

$$
X=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad \text { and } \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] .
$$

(i) What is the matrix $A+A^{T}$? is it a symmetric matrix?
(ii) What is the matrix A^{2} (that is $A A$)?
(iii) Use Mathematica to evaluate the $(1,2)$ entry of A^{10}.
(iv) Write out the matrix A^{-1} and state when it exists.
(v) Prove that $A A^{-1}=I$.
(vi) Write out the individual equations in the system of equations for x and y in:

$$
A X=b .
$$

(vii) Assume that A is non-singular (that is $\operatorname{det}(A) \neq 0$ and the matrix inverse exists). Write the explicit solution to x and y by considering $X=A^{-1} b$.
2. Consider a vector c, a vector d and an $n \times m$ matrix A. Consider the expression $c^{\prime} A d$.
(i) What dimensions do c and d need for the expression to be valid?
(ii) Write out a (double sum) expression for $c^{\prime} A d$ in terms of $c_{i}, A_{i, j}$ and d_{j}.
(iii) What if c and d are vectors of 1 's. What is the meaning of $c^{\prime} A$? How about the meaning of $A d$? How about $c^{\prime} A d$?
3. Prove that $(A B)^{T}=B^{T} A^{T}$ for two matrices A and B with dimensions that allow the multiplication $A B$.
4. Consider the following Mathematica code:
$\mathrm{n}=100 ;$
A := Table[RandomReal[], \{n\}, \{n\}];
MatrixPlot[A]
ones = Table[\{1\}, \{n\}];
s := (Transpose[ones].A.ones)[[1, 1]]
Table[s, \{5\}]
Histogram[Table[s, \{1000\}]]

Explain in detail what each line does and reason why the output is as it is.
5. Read the start of Section 8.1, dealing with polynomial interpolation:
https://people.smp.uq.edu.au/YoniNazarathy/julia-stats/StatisticsWithJulia.pdf
Try to reproduce Figure 8.1 (polynomial interpolation) in Mathematica by using an inverse of the Vandermonde matrix.

