1. In this exercise, consider functions of the form $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(i) Take $f_{a}(x, y)=a \cdot[x y]^{\prime}$ for a vector $a \in \mathbb{R}^{2}$, where \cdot is the dot product. For what vectors a is f_{a} an onto function? For what values is it a one-to-one function? Are there any vectors a for which it is an onto function and not a one-to one function? In case it isn't an onto function, what is the range?

Take now $f_{A}(x, y)=[x y] A[x y]^{\prime}$ for some matrix A.
(ii) Consider $A=2 I$. Plot a contour plot and a 3 D plot of f_{A}. Include the origin, $(x, y)=(0,0)$ in your plot. Is the function an onto function?
(iii) Find a matrix A for which f_{A} is an onto function.
(iv) Is there a matrix A for which f_{A} is a one-to-one function? If yes, present one such A. Otherwise, try to prove or argue why not.
(v) Try to describe the class of matrices A, for which f_{A} posseses a global minimum or a global maximum. If you are not able to do that, present 3 examples that don't posses a global minimum or maximum and 3 examples that do posses such an extremum point.
2. Use a truth table to show that the following logical statement is a tautology:

$$
(P \rightarrow Q) \vee(Q \rightarrow P) \vee(\neg Q)
$$

3. Consider sequences of numbers of the form $x_{n}=n^{\alpha}$ for $n=1,2,3, \ldots$ with $\alpha \in \mathbb{R}$.
(i) For what values of α does $\lim _{n \rightarrow \infty} x_{n}=0$?
(ii) Set now $S=\sum_{k=1}^{\infty} x_{k}$. For what values of α does the series, S, converge?
(iii) Consider $\alpha=-2$. Use Mathematica to analytically evaluate S. Use this result to suggest an algorithm for numerically approximating the constant π and implement it in Mathematica.
(iv) Consider $\alpha=-1$. In this case S is called the harmonic series. It holds that,

$$
\sum_{k=1}^{n} x_{k}=\log (n)+\gamma+e_{n}
$$

where γ is Euler's gamma constant and e_{n} is an $o(1)$ sequence. Numerically approximate γ and plot the sequence e_{n}.
4. Consider the series $\sum_{k=0}^{\infty} \frac{3^{k}}{k!}$, use the ratio test to show that it converges.
5. Let $\mathbf{1}_{n}$ be a column vector of 1's and b_{n} be the vector $\left[\begin{array}{lllll}1 & 2 & 3 & \ldots\end{array}\right]^{\prime}$.

$$
x_{n}=\frac{1}{n^{\alpha}} \mathbf{1}_{n}^{\prime}\left(b_{n} b_{n}^{\prime}\right) \mathbf{1}_{n}
$$

Is there a α for $\lim _{n \rightarrow \infty} x_{n}$ if the limit exists? If so, for which α does the limit exist?
6. Use the formal (ϵ, N), definition of the limit of a sequence to show that if $\lim _{n \rightarrow \infty} x_{n}=L_{1}$ and $\lim _{n \rightarrow \infty} y_{n}=L_{2}$ then,

$$
\lim _{n \rightarrow \infty} x_{n}+y_{n}=L_{1}+L_{2}
$$

