1. Assume that you only know: (1) That derivatives are linear. (2) That the derivative of a constant is 0. (3) That the derivative of x is 1. (4) $\frac{d}{dx}x^2 = 2x$. (5) The product rule. (6) The chain rule.

Use (1)-(6), or a subset to obtain each of the following:

- (i) $\frac{d}{dx}x^4$ (do it using the product rule).
- (ii) $\frac{d}{dx}x^4$ (do it using the chain rule).
- (iii) The quotient rule for derivatives.
- (iv) $\frac{d}{dx}x^{-7}$.
- (v) $\frac{d}{dx}(x+5)^2$ (do it using based on (1)-(4)).
- (vi) $\frac{d}{dx}(x+5)^2$ (do it using the chain rule).

2. Provide a detailed geometric explanation of why $\frac{d}{dx}\sin(x) = \cos(x)$.

- 3. Consider the standard normal density function, $f(x) = Ke^{-x^2/2}$ where $K = 1/\sqrt{2\pi}$.
 - (i) Calculate f'(x).
 - (ii) Calculate f''(x).
 - (iii) Plot f(x), f'(x) and f''(x) on the same plot with the x-axis range suitably chosen.
 - (iv) Argue why f(x) is maximized at x = 0 using the first and second derivative.
 - (v) Determine the location of the inflection points of f(x) using f''(x). Explain what this means.
 - (vi) Take now $g(x) = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$ with "mean" $\mu \in \mathbb{R}$ and "standard deviation" $\sigma > 0$. Repeat (i), (ii) and (v) for g(x).
- 4. Assume you have a supply of one kilometer of fencing. You wish to use it to enclose an area with a rectangle, maximizing the area. Formulate this problem as a one variable optimization problem and find the optimal shape. Explain your solution.
- 5. Consider a continuous function f(x). Assume it has a single root $x^* \in [-1, 1]$, i.e. $f(x^*) = 0$. Write Mathematica code, implementing the bisection method, determining x^* to within accuracy of 10^{-6} . Try your code on $f(x) = \frac{\sin(x-3.5)}{x-3.5}$.
- 6. Given data points, x_1, \ldots, x_n show that the sample mean, $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$ is also the minimizer, η of

$$\sum_{i=1}^{n} (x-\eta)^2.$$

7. Assume that instead, you now seek η that minimizes

$$\sum_{i=1}^{n} |x - \eta|.$$

Is the sample mean still the minimizer? If not, can you find the minimizer? (bonus).

8. Let x(t) be the (continuous) population at time $t \ge 0$. Assume that x(0) = 5 and you measure at t = 2.5 that x(2.5) = 10. Consider these two alternative population growth models:

$$\frac{d}{dt}x(t) = \alpha x(t), \qquad \frac{d}{dt}x(t) = \beta x(t) \left(1 - \frac{x(t)}{\gamma}\right)$$

Use numerical means, or any other means to suggest, α, β, γ for these models, such that both models fit the observations at times t = 0 and t = 2.5. Then determine x(5) and x(10) for both models and contrast the results.