(1) Let α and β be two real numbers and consider the matrices,

$$
A=\left[\begin{array}{cc}
1 & \alpha \\
1 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
\beta & -\alpha \beta \\
-\beta & \beta
\end{array}\right] .
$$

(i) Set $\alpha=-1$ and determine x and y in the system of equations,

$$
A\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

(ii) Determine the product $A A=$
(iii) Determine the product $A B=$
(iv) Given a value of α, with $\alpha \neq 1$, for what value of β does $B=A^{-1}$?
(v) Set $\alpha=\frac{1}{2}$ and $\beta=2$. Determine $A^{9} B^{8}=$
(2) Let $\mathbf{1}_{n}$ be an n dimensional column vector of 1's. Determine for which values of α the following series converges:

$$
S=\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \mathbf{1}_{n}^{\prime}\left(\mathbf{1}_{n} \mathbf{1}_{n}^{\prime}\right) \mathbf{1}_{n} .
$$

(3) Set

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \quad \text { and } \quad V_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Define the sequence of vectors V_{1}, V_{2}, \ldots via $V_{n+1}=A V_{n}$. That is $V_{2}=A V_{1}, V_{3}=A V_{2}$, etc. Consider now the sequence of Fibonacci numbers $x_{0}=1, x_{1}=1$ and $x_{n+1}=x_{n}+x_{n-1}$ for $n=1,2, \ldots$ Determine a matrix B such that

$$
x_{n}=B V_{n}
$$

