(1) Let α be a positive real valued parameter and consider the function

$$
f(x)=\alpha \sin (x)+x^{5}-5 x^{3}+5 x-1 .
$$

(i) What is $f^{\prime}(x)$?
(ii) What is $f^{\prime \prime}(x)$?
(iii) Consider the subset of the positive integers:

$$
\left\{k:\left|f^{(k)}(x)\right| \leq \alpha, \forall x \in \mathbb{R}\right\} .
$$

What exactly are the elements of this set?
(iv) Let x^{*} be an local extremum point of $f(x)$. Is it true that $-x^{*}$ is also such a point? Briefly explain your answer.
(2) Consider,

$$
A=\left[\begin{array}{cc}
e^{x} & x^{2} \\
\sin (x) & 0
\end{array}\right], \quad V=\left[\begin{array}{c}
x \\
\sqrt{x}
\end{array}\right], \quad U=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

(i) What is $U^{T} A V$?
(ii) What is $\frac{d}{d x} U^{T} A V$?
(iii) What is $\frac{d}{d x} \cos \left(U^{T} A V\right)$?
(iv) For what values of x does A^{-1} exist?
(v) Assuming A^{-1} exists what is $\frac{d}{d x} U^{T} A^{-1} U$?
(3) You are measuring the time-delay in seconds between events. This is denoted by t. The function $f(t)=t^{2} e^{-3 t}$ describes the likelihood of values of t for $t \geq 0$. That is, the higher $f(t)$, the higher the likelihood for that specific t.

Determine t for which the likelihood is maximal. Use the first and second derivative to argue why this is the maximal point.

