1. Consider a sequence of numbers of the form $x_{n}=r^{n}$, where $n=0,1,2, \ldots$ and $r \in \mathbb{R}$.
(i) Set $S=\sum_{n=0}^{\infty} \alpha x_{n}$. For what values of r does the series S converges? Find S and prove your answer.
S is a Geometric series. Thus, S is convergent for $|r|<1$.
Proof:
First we need to find general formula for partial sum S_{n}. We can write S_{n} as:
$S_{n}=\alpha+\alpha r+\alpha r^{2}+\alpha r^{3}+\ldots+\alpha r^{n}$, OR
$r S_{n}=r \alpha+\alpha r^{2}+\alpha r^{3}+\alpha r^{4}+\ldots+\alpha r^{n+1}$
If we subtract these two series:
$r S_{n}-S_{n}=\alpha r^{n+1}-\alpha$
$S_{n}(r-1)=\alpha\left(r^{n+1}-1\right)$
$S_{n}=\frac{\alpha\left(r^{n+1}-1\right)}{(r-1)}$ for $r \neq 1$.
Then, we take $\lim _{n \rightarrow \infty} S_{n}=$?
1) If $r=1: \lim _{n \rightarrow \infty} S_{n}$: does not exist (DNE). $\rightarrow S$ diverges.
2) If $r=-1: \quad S_{n}=\alpha \sum_{k=0}^{n}(-1)^{k} . \lim _{n \rightarrow \infty} S_{n}$: DNE. $\rightarrow S$ diverges.
3) If $|r|<1: \lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{\alpha\left(r^{n+1}-1\right)}{(r-1)}=\frac{\alpha}{1-r}$. Series S converges to $\frac{\alpha}{1-r}$. 4) IF $|r|>1: \lim _{n \rightarrow \infty} S_{n}:$ DNE $\rightarrow S$ is divergent.
(ii) For what values of r does the series S diverge?

From (i), S is divergent for $|r| \geq 1$.
(iii) Assume that $r=\frac{1}{2}$ and $\alpha=e$, where e is the Euler's number. Generate a plot that has two curves. Your first curve will depict partial sums S_{k} versus k where $k=0, \ldots, 20$. Show S_{k} using black circle symbols. Your second curve will depict the sum S for which the series converges when $k \rightarrow \infty$. Show this S value as a red solid curve. Label x-axis of your plot as k. Label y-axis of your plot as S_{k}. Put inset in your plot showing that the circles corresponds to S_{k} and the red curve corresponds to S. In up to two sentences, explain the convergence of the curve.
The following curve shows that $S=\sum_{n=0}^{\infty} e\left(\frac{1}{2}\right)^{n}$ converges to $2 e$.

2. Consider series

$$
S=\sum_{n=2}^{\infty} \frac{e^{n}}{3^{n+1}}
$$

Is the series S convergent or divergent? If you think the series diverges, explain your reason. If you think the series is convergent, then find the sum S.

This is a Geometric series. Note that the lower bound of sum starts from 2. Recalling Theorem 21 in Unit 5, we first need to find the of constant a (first term) and the common ratio of the series. To find a :

$$
S=\sum_{n=2}^{\infty} \frac{e^{n}}{3^{n+1}}=\sum_{n=2}^{\infty} \frac{e^{n}}{3 \times 3^{n}}=\sum_{n=2}^{\infty} \frac{1}{3}\left(\frac{e}{3}\right)^{n}
$$

Now we have the series in the form of Theorem 21. So, the first term of series is $a=e^{2} / 27$ for $n=2$. And the common ratio is $e / 3$ which is in the convergence regime. Thus S converges to:

$$
S=\frac{e^{2} / 27}{1-e / 3}
$$

3. Use the methods for determining multivariate limits and prove that the following limits do not exist:
(i)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3} \cos x}{2 x^{2}+y^{6}}
$$

There are two independent variables x and y in this limit. So, we will check the limit in a 2D region:

1) Approach $(0,0)$ along x-axis $(y=0)$:

$$
\lim _{x \rightarrow 0} \frac{0}{2 x^{2}}=0
$$

2) Approach $(0,0)$ along y-axis $(x=0)$:

$$
\lim _{y \rightarrow 0} \frac{0}{y^{6}}=0
$$

3) Now lets take a path in 2D such that the degrees of variables in nominator and denominator match up. One way is to eliminate the variable with smaller power. So, let's take path $x=y^{3}$. After substituting, the only independent variable is y :

$$
\lim _{y \rightarrow 0} \frac{y^{3} y^{3} \cos y^{3}}{2 y^{6}+y^{6}}=\lim _{y \rightarrow 0} \frac{y^{6} \cos y^{3}}{3 y^{6}}=\lim _{y \rightarrow 0} \frac{\cos y^{3}}{3}=\frac{1}{3}
$$

So, travelling along x-axis, y-axis, and $x=y^{3}$, the value of function is different (i.e., $\left.0 \neq \frac{1}{3}\right)$. Thus, the limit DNE at $(0,0)$.
(ii)

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y+y z+x z}{x^{2}+y^{2}+z^{2}}
$$

There are three independent variables in this limit. So, we will check the limit in a 3D region:

1) Approach ($0,0,0$) along x-axis $(y=0, z=0)$:

$$
\lim _{x \rightarrow 0} \frac{0}{x^{2}}=0
$$

We can repeat this along y-axis and z-axis, and the limit will be zero. So, we can test travelling along a 3D path such that is parametric and the degrees of nominator and denominator match up. For example, let $x=t, y=t, z=t$ which is line in 3D region. Now
approaching $(0,0,0)$ along this line is equivalent to approach 0 with the new independent variable t. After substituting:

$$
\lim _{t \rightarrow 0} \frac{t^{2}+t^{2}+t^{2}}{t^{2}+t^{2}+t^{2}}=\lim _{t \rightarrow 0} \frac{3 t^{2}}{3 t^{2}}=1
$$

We see that as we travel along x-axis and the line $x=y=z$, the value of function is different (i.e., $0 \neq 1$). Thus, the limit DNE at ($0,0,0$).
4. Consider the following function

$$
f(x)=\frac{1}{x^{2}-x}
$$

on interval $(0,1)$.
(i) Find the critical points of $f(x)$.

$$
f^{\prime}(x)=\frac{1-2 x}{\left(x^{2}-x\right)^{2}}
$$

To check the critical points:

$$
f^{\prime}(x)=0 \rightarrow 1-2 x=0 \rightarrow x=1 / 2
$$

$x=1 / 2$ is within the interval. Thus, at critical point $x=1 / 2, f(1 / 2)=-4$.
(ii) What are the global maximum and minimum of $f(x)$, if exist?

We now need to evaluate the function at the boundaries of the interval. Since the interval is open, we find one-sided limits:

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}-x}=-\infty
$$

and

$$
\lim _{x \rightarrow 1^{-}} \frac{1}{x^{2}-x}=-\infty
$$

These two limits show that there is no global minimum. From (i), the global maximum is $f(1 / 2)=-4$.
(iii) Where do the global maximum and minimum of $f(x)$ occur, if exist?

From (i), the global maximum -4 occurs at $x=1 / 2$.
(iv) Plot $f(x)$ versus x. Show the curve as a black solid curve. Label x-axis of your plot as x. Label y-axis of your plot as $f(x)$. Do your findings of global maximum, global minimum, and critical points agree with your plot? Explain it in up to three sentences.

