1. Let

$$
\begin{gathered}
g(x)=(2 x-3)\left(x^{2}-5\right)^{3} \\
f(x, y, z)=\ln (2 x-y)+e^{2 x z} \\
h(x)=2 x^{3} \sin \left(x^{4}\right)
\end{gathered}
$$

(i) Find $d g / d x$.
(ii) Find $d f$.
(iii) Find $\int h(x) d x$.
2. Assume that the pressure $P$ of a certain gas is modelled as:

$$
P=8.314 \frac{T}{v}
$$

where $T$ is the temperature and $v$ is the volume.
(i) Formulate the change in the pressure over time due to any change in $T$ and $v$.
(ii) Assume that volume increases from 20 L to 20.5 L and temperature decreases from 300 K to 295 K . What is the change in the gas pressure?
3. Consider a two-dimensional surface $f(x, y)=\sqrt{x^{2}+y^{2}+1}$.
(i) Find the direction of the maximum slope of the surface at any point.
(ii) Find the direction of the maximum slope of the surface at point $(2,2)$.
(iii) Find the slope of the surface at point (2,2) in the direction of $\boldsymbol{v}=3 \boldsymbol{i}+4 \boldsymbol{j}$.
4. Consider the Gaussian integral

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

(i) Evaluate the Gaussian integral. Explain all the steps you take.
(ii) Assume that the range of the integral above becomes 0 to $\infty$. Then, evaluate the following integral and justify all the steps you take:

$$
\int_{0}^{\infty} e^{-x^{2}} d x
$$

