1. Find the sum S for the following series. Hint: you can decompose the fraction into two fractions using use partial fractions. The series can then be calculated as a telescoping series.

$$
S=\sum_{n=1}^{\infty} \frac{4}{4 n^{2}-1}
$$

2. Prove that $f(x)=\sqrt{16-x^{2}}$ is continuous on $[-4,4]$.
3. Find the global maximum and minimum of the function $f(x)=2 x^{3}-3 x^{2}-12 x+1$ on the interval $[-2,0]$.
4. Consider

$$
f(x)=\frac{1}{1-x}
$$

(a) Find the Maclaurin series of $f(x)$.
(b) Find the convergence interval for the series obtained from part (a) of question 4, using the ratio test.

