This is the cover sheet. Write your name and good luck.

Instructions:

The number of points per question is marked next to the question.
The total number of points is 100 .
Answer all questions on this exam paper.
(1) Assume you have a grayscale image represented in a 50×200 matrix A where $A_{i j}$ represents the pixel intensity of the matrix as a number in the range $[0,1]$, with $A_{i j}=0$ implying dark and $A_{i j}=1$ bright.

Let $\mathbf{1}_{n}$ denote a column vector of n 1's and set,

$$
m=\mathbf{1}_{50}^{T} A \mathbf{1}_{200}
$$

(1a) Represent the minimizer of,

$$
L(x)=\sum_{i=1}^{50} \sum_{j=1}^{200}\left(x-A_{i j}\right)^{2}
$$

in terms of m.
Comment: The minimizer is the value of x that minimizes $L(x)$.
(15 points)

Solution:

Seek $\frac{d L(x)}{d x}=0$:

$$
\frac{d L(x)}{d x}=\sum_{i=1}^{50} \sum_{j=1}^{200} 2\left(x-A_{i j}\right)=0
$$

Hence

$$
\sum_{i=1}^{50} \sum_{j=1}^{200}\left(x-A_{i j}\right)=0
$$

or,

$$
10^{4} x=\sum_{i=1}^{50} \sum_{j=1}^{200} A_{i j}=m
$$

Hence,

$$
x^{*}=10^{-4} m
$$

Can also check it is a minimizer via $\frac{d L(x)^{2}}{d x^{2}}>0$:

$$
\frac{d L(x)^{2}}{d x^{2}}=2 \times 10^{4}>0
$$

Note that a purley algebraic solution is possible because $L(x)$ is just a parabola in x of the form,

$$
L(x)=a x^{2}+b x+c
$$

(1b) Say that for demonstration purposes, you wish to find the minimizer of $L(x)$ as defined above via a one dimensional gradient descent algorithm. For this you set $x_{0}=0.5$, and then for $n \geq 1$, you proceed via the recursion:

$$
x_{n+1}=x_{n}-\eta L^{\prime}\left(x_{n}\right)
$$

where L^{\prime} is derivative of L. Here, η, the learning rate, is a positive value. Establish a range for η over which the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to your solution of (1a).
(20 points)

Solution:

Using the derivative from the previous solution,

$$
\begin{aligned}
x_{n+1} & =x_{n}-\eta \sum_{i=1}^{50} \sum_{j=1}^{200} 2\left(x_{n}-A_{i j}\right) \\
& =x_{n}-2 \times 10^{4} \eta x_{n}+2 \eta m \\
& =\left(1-2 \times 10^{4} \eta\right) x_{n}+2 \eta m
\end{aligned}
$$

This is of the form,

$$
x_{n+1}=a x_{n}+b
$$

and hence,

$$
\begin{aligned}
x_{1} & =a x_{0}+b \\
x_{2} & =a\left(a x_{0}+b\right)+b=a^{2} x_{0}+a b+b \\
x_{3} & =a\left(a^{2} x_{0}+a b+b\right)+b=a^{3} x_{0}+a^{2} b+a b+b=a^{3} x_{0}+b \sum_{i=0}^{2} a^{i} \\
& \ldots \\
x_{n} & =a^{n} x_{0}+b \sum_{i=0}^{n-1} a^{i}=a^{n} x_{0}+b \frac{a^{n}-1}{a-1} .
\end{aligned}
$$

Hence if $|a|<1$,

$$
\lim _{n \rightarrow \infty} x_{n}=\frac{b}{1-a}
$$

and otherwise $\left\{x_{n}\right\}$ diverges. In our case $a=1-2 \times 10^{4} \eta$ and if $|a|<1$ the limit is the answer from the previous question:

$$
\frac{2 \eta m}{1-\left(1-2 \times 10^{4} \eta\right)}=10^{-4} \mathrm{~m}
$$

Now $a<1$ so $|a|<1$ means that $-1<a$ or $-2<-2 \times 10^{4} \eta$ or,

$$
\eta<10^{-4}
$$

(2) Let γ be a positive quantity. Consider the probability density function of a distribution defined over $[0, \infty)$:

$$
f(x)=K \frac{x}{\gamma} e^{-\frac{x^{2}}{\gamma}}
$$

where K is some positive constant (depending on γ).
(2a) Determine K such that the integral,

$$
\int_{0}^{\infty} f(x) d x=1
$$

(15 points)

Solution:

This is the Rayleigh distribution. Set $u=x^{2}$ and hence $d u / 2=x d x$ and hence,

$$
\int K \frac{x}{\gamma} e^{-x^{2} / \gamma} d x=\int \frac{K}{2 \gamma} e^{-u / \gamma} d u=-\frac{K}{2} e^{-u / \gamma}+C=-\frac{K}{2} e^{-x^{2} / \gamma}+C
$$

Hence for the improper integral,

$$
\int_{0}^{\infty} f(x) d x=\lim _{x \rightarrow \infty}-\frac{K}{2} e^{-x^{2} / \gamma}+\frac{K}{2}=\frac{K}{2}
$$

Hence $K=2$.
Note: compare to the density appearing in Wikepdia with $\gamma=2 \sigma^{2}$.
(2b) The median is the value $\mu>0$ such that,

$$
\int_{0}^{\mu} f(x) d x=\frac{1}{2}
$$

Find the median in terms of γ.
(15 points)

Solution:

Following the indefinite integral and the value of K from the previous question,

$$
\int_{0}^{u} f(x)=-\left.e^{-x^{2} / \gamma}\right|_{x=\mu}+\left.e^{-x^{2} / \gamma}\right|_{x=0}=1-e^{-\mu^{2} / \gamma}=1 / 2
$$

Or,

$$
\log 1 / 2=-\mu^{2} / \gamma
$$

Or

$$
\mu=\sqrt{\gamma \log 2}
$$

(3) Let θ be a real value parameter and consider the matrix $B_{\theta}(x)$ represented as a function of x and parameterized by θ :

$$
B_{\theta}(x)=\left[\begin{array}{cc}
x^{2} & 0 \\
e^{\cos (x)} & e^{\theta x}
\end{array}\right]
$$

You now wish to calculate the definite improper integral

$$
M_{\theta}=\int_{-10}^{\infty}\left|B_{\theta}(u)\right| d u
$$

where $|\cdot|$ represents the determinant. Determine the set of values of θ for which the integral converges.
(15 points)

Solution:

First observe that $\left|B_{\theta}(x)\right|=x^{2} e^{\theta x}$. We can then compute the integral using integration by parts twice to get and explicit expression for

$$
\int u^{2} e^{\theta u} d u
$$

but this is not necessarily needed. Instead we can reason that only if $\theta<0$ the integral converges and otherwise not. Hence the solution is $\theta \in(-\infty, 0)$.
(4) Assume $\lambda>0$ and let $f(x)=\lambda e^{-\lambda x}$. Now for $k=0,1,2, \ldots$, define,

$$
M_{k}=\int_{0}^{\infty} x^{k} f(x) d x
$$

Prove that,

$$
M_{k}=\frac{k!}{\lambda^{k}}
$$

(20 points)

Solution:

(Note: This is the k 'th moment of an exponential distribution).
Look at, $J_{n} \equiv \int x^{n} \lambda e^{-\lambda x} d x$ for $n \geq 1$. and carry out integration by parts:

$$
u=x^{n}, \quad u^{\prime}=n x^{n-1}, \quad v^{\prime}=\lambda e^{-\lambda x}, \quad v=-e^{-\lambda x}
$$

Hece,

$$
J_{n}=\int u v^{\prime} d x=u v-\int u^{\prime} v d x=-x^{n} e^{-\lambda x}+\frac{n}{\lambda} \int x^{n-1} \lambda e^{-\lambda x} d x=-x^{n} e^{-\lambda x}+\frac{n}{\lambda} J_{n-1}
$$

Writing this recursion for the definite improper integral works just the same:

$$
M_{n}=-\left.x^{n} e^{-\lambda x}\right|_{0} ^{\infty}+\frac{n}{\lambda} M_{n-1}=\frac{n}{\lambda} M_{n-1}
$$

Now $M_{0}=1$ by basic integration of $\lambda e^{-\lambda x}$ and hence the result follows by induction.

END OF EXAMINATION

