You can use Mathematica as an aid for many of the computations, however make sure to do hand calculations where suitable as well.

1. Consider the 2×4 matrix,

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$

Consider also the 4×2 matrices

$$L = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \text{and} \quad R = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

- (a) Denote B = AL and C = AR. Describe in words the matrices B and C in terms of the matrix A.
- (b) Determine the matrix $G = AA^T$.
- (c) Determine the matrix $H = A^T A$.
- (d) Is the matrix G symmetric? How about the matrix H? Would your answer always be true if G and H were made up of other values of A or is it specific to the values of A presented in this question?
- (e) Compute the determinant of G and the determinant of H.
- (f) One of the two matrices G and H is invertible. Which one? What is the inverse?
- 2. Consider the $m \times n$ matrix A and the $n \times p$ matrix B, with respective entries for each matrix represented via $a_{ij} = i 2j$ and $b_{ij} = 2i + j$.
 - (a) Assume m = 3, n = 2, and p = 4. Evaluate the matrix C = AB.
 - (b) Derive (prove) the formula,

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

- (c) Use Mathematica to obtain a formula for $\sum_{k=1}^{n} k^2$.
- (d) Assume now arbitrary m, n, and p values. Use the above formulas to obtain a general formula for the entries of C, c_{ij} . Check that your results agree with (a). You may use Mathematica to simplify expressions if needed.
- 3. In general matrix multiplication is not commutative, that is $AB \neq BA$.
 - (a) Find two $n \times n$ matrices A and B such that $AB \neq BA$.
 - (b) Find two 2×2 matrices A and B, with all entries nonzero, such that AB = BA.
 - (c) Consider now random 3×3 matrices where the entries are drawn uniformly from the set $\{1, 2, ..., r\}$. Write a Mathematica program that estimates the probability of AB = BA for two random matrices for values of r = 2, 3, 4, 5. Do this for each r by simulating (drawing random) 100,000 pairs of matrices A and B and checking if they commute each time. Then report the proportion.
- 4. For any angle $\theta \in [0, 2\pi]$, consider the rotation matrix,

$$A_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

(a) Compute the determinant $|A_{\theta}|$.

- (b) Prove that for any two angles θ_1 and θ_2 , $A_{\theta_1}A_{\theta_2} = A_{\theta_2}A_{\theta_1}$.
- (c) Given some A_{θ} consider the inverse matrix and represent it via A_{η} where $\eta \in [0, 2\pi]$.
- 5. Consider the matrix A and the vector y given by,

	[1	2.4			[3.1]	
	1	4.7			2.7	
A =	1	4.9	and	y =	4.8	.
	1	2.9			7.6	
	1	8.1			5.4	

- (a) Generate a million random entries in $[0, 5] \times [0, 5]$ of the vector $\beta = [\beta_0 \ \beta_1]^T$ searching for a vector that approximates the minimum of $||A\beta y||$. Then plot the points $(A_{i,2}, y_i)$ for i = 1, ..., 5 against a line $y = \beta_0 + \beta_1 x$ where β_0 and β_1 are the (approximate) minimum.
- (b) The theory of least squares (studied in future courses e.g. MATH7502) indicates that the β that minimizes $||A\beta y||$ (as well as $||A\beta y||^2$) is given by,

$$\beta = (A^T A)^{-1} A^T y,$$

as long as the matrix $A^T A$ is non-singular. Use this formula to find the best β and compare it to the β you found in question 1.

- 6. Consider the sets $A = \{k \in \mathbb{N} \mid k \text{ is divisible by } 3\}$ and $B = \{k \in \mathbb{N} \mid k+1 \text{ is divisible by } 3\}$.
 - (a) What is the set $A \cap B$?
 - (b) What is the set $\mathbb{N} \setminus (A \cup B)$?
 - (c) Consider the additional set,

$$C_r = \{k \in \mathbb{N} \mid k \le r\},\$$

where r is a number. Write Mathematica code to determine $|A \cap C_r|$ and try it for r = 10, 20, 100.

- 7. Consider the set $B = \{a, b, c, \{c\}, \emptyset\}$. Determine if each statement is true or false and explain why:
 - (a) $|2^B| = 2^{|B|}$.
 - (b) $\{b, c\} \subset B$.
 - (c) $\{b, c\} \in 2^B$
 - (d) $\{a\} \in B$.
 - (e) $\emptyset \subset B$.
 - (f) $\emptyset \in B$.
- 8. Consider the equation,

$$x_1 + x_2 + \ldots + x_n = k,$$

where n and k are integers and the solution to the equation, denoted (x_1, \ldots, x_n) , is restricted for the set of non-negative integers.

(a) Show that the number of solutions is,

$$\binom{n+k-1}{k}.$$

- (b) Write a Mathematica program that presents all solutions and demonstrate it working for k = 2 and n = 6.
- (c) Consider playing monopoly and rolling two (indistinguishable) dice. How many possible outcomes are there? What is the relationship to the above items?