- (1) Consider the 2 × 2 matrix A with entries $A_{ij} = {i+j \choose i}$.
 - (i) Determine the numerical values for the entries of A.

(ii) Determine det(A).

- (iii) If it exists, determine A^{-1} otherwise indicate that the inverse does not exist.
- (iv) Consider the (column) vector **1** which has entries 1 and 1. Denote $u = A\mathbf{1}$. Determine ||u||.
- (v) Take now an $n \times n$ matrix A with entries $A_{ij} = \binom{n}{i}$ and let e_i be the n-unit vector $([e_i]_j = 0$ for $j \neq i$ and $[e_i]_j = 1$ for j = i). Find a simple expression for,

$$\sum_{i=1}^{n} e_i^T A e_i.$$

(2) Let the set \mathcal{M} be the set of all 2×2 matrices with real elements in the range [-1, 1]. Let the set \mathcal{N} be the set of all 2×2 matrices with elements that are in the set $\{-1, +1\}$. Let I be the 2×2 identity matrix.

- (i) Is $(I \in \mathcal{M}) \land (\mathcal{N} \subset \mathcal{M})$ true or false?
- (ii) Determine the value of $|\mathcal{N}|$.
- (iii) Determine the value of $|2^{\mathcal{N}}|$.
- (iv) Find an element $X \in \mathcal{N}$ such that det(X) = 2.
- (v) Consider the (column) vector **1** which has entries 1 and 1. Now for any 2×2 matrix X denote \overline{X} as $\mathbf{1}^T X \mathbf{1}$. What is the maximal value of \overline{X} that can be obtained if considering all $X \in \mathcal{N}$?
- (vi) Does the same answer hold if considering all $X \in \mathcal{M}$? Briefly explain.

(vii) Is
$$(\mathcal{M} \setminus \mathcal{N} = \emptyset) \Rightarrow (I \notin \mathcal{M})$$
 true or false?

(viii) Determine the value of $|\mathcal{N} \times \mathcal{N}|$.

(3) Prove by induction or any other means:

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}.$$