SOLUTION

- (1) Consider the 2×2 matrix A with entries $A_{ij} = {i+j \choose i}$.
 - (i) Determine the numerical values for the entries of A.

$$A = \begin{bmatrix} \binom{2}{1} & \binom{3}{1} \\ \binom{3}{2} & \binom{4}{2} \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix}.$$

(ii) Determine det(A).

$$\det(A) = 2 \times 6 - 3 \times 3 = 3.$$

(iii) If it exists, determine A^{-1} otherwise indicate that the inverse does not exist.

$$A^{-1} = \frac{1}{3} \begin{bmatrix} 6 & -3 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 2/3 \end{bmatrix}.$$

(iv) Consider the (column) vector $\mathbf{1}$ which has entries 1 and 1. Denote $u = A\mathbf{1}$. Determine ||u||.

$$u = \begin{bmatrix} 5 & 9 \end{bmatrix}^T$$
. Hence, $||u|| = \sqrt{5^2 + 9^2} = \sqrt{106} \approx 10.3$.

(v) Take now an $n \times n$ matrix A with entries $A_{ij} = \binom{n}{i}$ and let e_i be the n-unit vector ($[e_i]_j = 0$ for $j \neq i$ and $[e_i]_j = 1$ for j = i). Find a simple expression for,

$$\sum_{i=1}^{n} e_i^T A e_i.$$

We have that, $e_i^T A e_i = A_{ii} = \binom{n}{i}$. Hence,

$$\sum_{i=1}^{n} e_i^T A e_i = \sum_{i=1}^{n} \binom{n}{i} = .\left(\sum_{i=0}^{n} \binom{n}{i}\right) - \binom{n}{0} = 2^n - 1.$$

- (2) Let the set \mathcal{M} be the set of all 2×2 matrices with real elements in the range [-1,1]. Let the set \mathcal{N} be the set of all 2×2 matrices with elements that are in the set $\{-1,+1\}$. Let I be the 2×2 identity matrix.
 - (i) Is $(I \in \mathcal{M}) \land (\mathcal{N} \subset \mathcal{M})$ true or false?

It is true that $I \in \mathcal{M}$. It is also true that any element (matrix) of \mathcal{N} is an element of \mathcal{M} and hence $\mathcal{N} \subset \mathcal{M}$. Hence the conjunction (\land) is also true.

(ii) Determine the value of $|\mathcal{N}|$.

Each matrix has 4 entries. Each entry has 2 options. Hence there are $2^4 = 16$ matrices.

(iii) Determine the value of $|2^{\mathcal{N}}|$.

$$|2^{\mathcal{N}}| = 2^{|\mathcal{N}|} = 2^{16} = 65,536.$$

(iv) Find an element $X \in \mathcal{N}$ such that $\det(X) = 2$.

Take for example,

$$X = \begin{bmatrix} +1 & -1 \\ 1 & +1 \end{bmatrix}.$$

(v) Consider the (column) vector $\mathbf{1}$ which has entries 1 and 1. Now for any 2×2 matrix X denote \overline{X} as $\mathbf{1}^T X \mathbf{1}$. What is the maximal value of \overline{X} that can be obtained if considering all $X \in \mathcal{N}$?

We have that \overline{X} is a scalar with,

$$\overline{X} = \mathbf{1}^T X \mathbf{1} = \sum_{i=1}^2 \sum_{j=1}^n A_{ij}.$$

The maximal value is when $A_{ij} = +1$ for all i and j and thus the maximal value of \overline{X} is 4.

(vi) Does the same answer hold if considering all $X \in \mathcal{M}$? Briefly explain.

Yes. Since the maximal A_{ij} for elements of \mathcal{N} is the same as the maximal A_{ij} for elements of \mathcal{M} , even when considering the (infinite) set \mathcal{M} , the maximal \overline{X} is 4.

(vii) Is
$$(\mathcal{M} \setminus \mathcal{N} = \emptyset) \Rightarrow (I \notin \mathcal{M})$$
 true or false?

Observe that $\mathcal{M} \setminus \mathcal{N} \neq \emptyset$ because there are many elements of \mathcal{M} that are not in \mathcal{N} . Hence as a logical statement we have,

false
$$\Rightarrow$$
 something.

In this case, "something" is false because $I \in \mathcal{M}$, but that doesn't matter. This statement is true because $F \Rightarrow$ something is true.

(viii) Determine the value of $\left| \mathcal{N} \times \mathcal{N} \right|$.

We have that if sets \mathcal{A} and \mathcal{B} are finite then $|\mathcal{A} \times \mathcal{B}| = |\mathcal{A}| |\mathcal{B}|$. Hence the answer is $16 \times 16 = 256$.

(3) Prove by induction or any other means:

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}.$$

Proof by induction:

Let us show the statement is true for n = 1:

$$1^3 = \frac{1^2(1+1)^2}{4}.$$

Now assume the statement is true for n and we shall show it is true for n + 1:

$$\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^{n} k^3 + (n+1)^3$$

$$= \frac{n^2(n+1)^2}{4} + (n+1)^3$$

$$= \frac{(n+1)^2(n^2 + 4(n+1))}{4}$$

$$= \frac{(n+1)^2((n+1) + 1)^2}{4}.$$

This is exactly the statement for n+1 and this completes the induction proof.