- (1) Evaluate each of the following expressions. Fully justify your use of any theorems from class.
 - (i) $\lim_{x\to\infty} e^{-\frac{1}{x^2}}$.
 - (ii) $\lim_{x \to 2} \frac{x-2}{\cos(\pi x)+1-x}$.
- (iii) $\lim_{x\to 0} f(x)$, where f(x) is any real function such that x < f(x) < -x for all x < 0, and $-x^{10} < f(x) < x^5$ for all x > 0.
- (iv) $\sum_{n=1}^{\infty} \frac{e}{\pi^n}$.
- (v) $\lim_{x\to\infty} \frac{x-2}{\cos(\pi x)+1-x}$. Hint: It is useful to note that for $x > 10, -x \le \cos(\pi x) + 1 - x \le 2 - x$.

(2) Consider the function

$$f(x) = \begin{cases} 0 & \text{if } x = 0, \\ e^{-\frac{1}{x^2}} & \text{if } x \neq 0. \end{cases}$$

- (i) Show that f is continuous at any non-zero value of x.
- (ii) Calculate f'(x) for each $x \neq 0$.
- (iii) Show that f is continuous at the point x = 0.

(3) Consider the real-valued function

$$f(x) = x^3 + 4x^2 - 20x + 1.$$

- (i) Calculate f'(x), f''(x).
- (ii) Find all of the critical points of f; determine if they are local maxima/minima.
- (iii) How many distinct real valued roots does f have? Prove your answer by making reference to the IVT and the MVT.