MATH 7502 - Semsester 2, 2018

Mathematics for Data Science 2

Created by Zhihao Qiao, Maria K.... and Yoni Nazarathy

Assignment 1

Question (1)

(a) If \(u = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \), \(v = \begin{bmatrix} -6 \\ 1 \\ -2 \end{bmatrix} \), \(w = \begin{bmatrix} 4 \\ -6 \\ -1 \end{bmatrix} \),
prove and disprove that \(u \), \(v \) and \(w \) lie in the same plane.

(b) Use the dot product to determine the angle between \(u \) and \(v \).

(c) Find the length(L2 norm) of \(u \) and \(v \), show that Cauchy-Schwarz inequality and the Triangle Inequality holds.

(d) Find the unit vectors associated with \(u \), \(v \) and \(w \).

solution

(a) Three vectors are in the same plane iff they are dependent. but \(u \) is independent from \(v \) and \(w \), therefore they are not in the same plane. See also the Julia code below indicating they are independent.

(b) \(u \cdot v = -6 + 2 - 6 = -10 \).
\[
|u||v| = \sqrt{14} \sqrt{41}
\]
\[
\cos(\theta) = \frac{-10}{\sqrt{14} \sqrt{41}}.
\]
\[
\theta = -0.417.
\]

(c) as (b), \(|u \cdot v| = 10 \),
\[
||u||_2 = \sqrt{14}, ||v||_2 = \sqrt{41},
\]
we have that \(10 < \sqrt{14} \sqrt{41} \). Therefore CS holds in L2 norm.

(d) \(\hat{u} = \frac{1}{\sqrt{14}} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \), \(\hat{v} = \frac{1}{\sqrt{41}} \begin{bmatrix} -6 \\ 1 \\ -2 \end{bmatrix} \), \(\hat{w} = \frac{1}{\sqrt{53}} \begin{bmatrix} 4 \\ 6 \\ -1 \end{bmatrix} \)
In [2]:

A = [1 -6 4; 2 1 -6; 3 -2 -1];
nullspace(A),det(A)

since the nullspace is \{0\} and they are independent
Alt, since the det is not equal to 0 they are independent

Out[2]:

(Array{Float64}(3,0), 55.000000000000036)

Question 2

(a) Find unit vector \(u_1\) and \(u_2\) in the direction of \(v = (1, 4)\) and \(w = (-2, 1, 2)\) respectively.

(b) Find unit vectors \(v_1\) and \(v_2\) that are parallel to \(u_1\) and \(u_2\) (Are there such vectors not \(u_1\) and \(u_2\)?).

(c) Find unit vectors \(w_1\) and \(w_2\) that are perpendicular to \(u_1\) and \(u_2\).

(d) Find the dot product of any unit vector \(u + w\) and \(u - w\).

solution

(a) \(u_1 = \frac{1}{\sqrt{17}}(1, 4), u_2 = \frac{1}{3}(-2, 1, 2)\)

(b) Suppose \(v_1\) exists, then \(v_1 = \alpha u_1\) and \(\alpha\) is a real scalar. We know that \(v_1\) is also a unit vector, therefore
\[\|v_1\|_2 = \sqrt{\alpha} \|u_1\|_2 = 1\]

Since \(\|u_1\|_2 = 1\), therefore we must have \(\sqrt{\alpha} = 1\), then \(u_1 = v_1\).

(c) No unique answer, as long as the dot products are 0.

(d)
\[(u + w) \cdot (u - w) = u \cdot u - w \cdot w = \|u\|_2^2 - \|w\|_2^2 = 0\]
Question 3

Show the implementation of k-means algorithm (using k=2) for the following table by hand:

<table>
<thead>
<tr>
<th>Individual</th>
<th>Variable 1</th>
<th>Variable 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>7.0</td>
</tr>
<tr>
<td>5</td>
<td>3.5</td>
<td>5.0</td>
</tr>
<tr>
<td>6</td>
<td>4.5</td>
<td>5.0</td>
</tr>
<tr>
<td>7</td>
<td>3.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Initialize with individual (1) and (4), in this case the centroid are \(m_1 = (1.0, 1.0) \) and \(m_2 = (5.0, 7.0) \).

(a) Using the initializations given, verify two clusters of next step is \{1, 2, 3\} and \{4, 5, 6, 7\}.

(b) Find the new centroids using (a).

(c) Verify the most optimized cluster with k =2.

Solution

(a) We can find the distance of each individual from the centroid \(m_1 \) and \(m_2 \). E.g. For individual (1), the distance to \(m_1 \) is 0, and distance to \(m_2 \) is \(\sqrt{(1 - 5)^2 + (1 - 7)^2} = \sqrt{52^2} = 7.21 \)

(b) the new centroid, \(m_1 = \left(\frac{1}{3} (1 + 1.5 + 3), \frac{1}{3} (1 + 2 + 4) \right) = (1.83, 2.33) \).

\(m_2 = \left(\frac{1}{4} (5 + 3.5 + 4.5 + 3.5), \frac{1}{4} (7 + 5 + 5 + 4.5) \right) = (4.12, 5.38) \).

(c) repeat (a) with the new centroid, should get the same cluster.

Note: The fact that k-means stopped does NOT imply an optimal solution - but rather a "stopping of the algorithm" - this (heuristic) is in practice taken as "optimal". However, for pedagogical purposes, if we would like to actually find the optimum, it can be done by considering all possible \(2^{4 \times 7} = 128 \) partitions of these individuals. We have not done this for the solution.

Question 4

Let \(f \) be a mapping from \(R^2 \to R^2 \),
\[
f(x, y) = \left(e^x \sin(y), e^x \cos(y) \right)\]

(a) Compute the Jacobian Matrix.

(b) Find its determinant.

(c) State conditions for invertability of \(x \) and \(y \).

Solution

(a) we have \(f_1(x, y) = e^x \sin(y), f_2(x, y) = e^x \cos(y) \).

\[
d_x(f_1) = e^x \sin(y), d_y(f_1) = e^x \cos(y),
\]

\[
d_x(f_2) = e^x \cos(y), d_y(f_2) = -e^x \sin(y).
\]

Therefore,
\[
J = \begin{bmatrix} e^x \sin(y) & e^x \cos(y) \\ e^x \cos(y) & -e^x \sin(y) \end{bmatrix} = e^x \begin{bmatrix} \sin(y) & \cos(y) \\ \cos(y) & -\sin(y) \end{bmatrix}
\]

(b)
\[
det(J) = (e^x)^2 \left(-\sin^2(y) - \cos^2(y) \right) = -e^{2x}
\]

(c) It is always invertable.

Question 5

True or false (give a reason or prove if true and a counter example if false).

(a) If \(u = (1, 1, 1) \) is perpendicular to \(v \) and \(w \) for any \(v \) and \(w \), then \(v \) is parallel to \(w \).

(b) If \(u \) is perpendicular to \(v \) and \(w \), then \(u \) is perpendicular to \(v + w \).

(c) If \(u \) and \(v \) are perpendicular unit vectors, then \(\|u - v\| = \sqrt{2} \).

(a) Not true, e.g \(v = (1, -1, 0) \) and \(w = (0, -1, 1) \).

(b) True, \(u \cdot (v + w) = u \cdot v + u \cdot w = 0 \).

(c) \(\|u - v\|_2 = \sqrt{(u - v) \cdot (u - v)} = \sqrt{u \cdot u - u \cdot v - v \cdot u + v \cdot v} = \sqrt{u \cdot u + v \cdot v} = \sqrt{2} \)
Question 6

Suppose each of the vectors \(u_1, \ldots, u_k \) is a linear combination of the vectors \(v_1, \ldots, v_m \). Assume that \(w \) is a linear combination of \(u_1, \ldots, u_k \).

(a) Show that \(w \) is also a linear combination of \(v_1, \ldots, v_m \) for the case \(m = k = 2 \).

(b) Show the above for the general \(m \) and \(k \). (Note: \(m \) does not necessarily equal to \(k \)).

Solution

(a) \(u_1 = a_1 v_1 + b_1 v_2, u_2 = a_2 v_1 + b_2 v_2 \), since \(w \) is a linear combination of \(u_1 \) and \(u_2 \),

\[
w = pu_1 + qu_2 = p(a_1 v_1 + b_1 v_2) + q(a_2 v_1 + b_2 v_2) = (pa_1 + qa_2) v_1 + (pb_1 + qb_2) v_2.
\]

(b) Let

\[
u_j = a_{1,j} v_1 + \ldots + a_{m,j} v_m
\]

and

\[
w = b_1 u_1 + \ldots b_k u_k.
\]

Substitute \(u_j \) to \(w \), we have

\[
w = b_1(a_{1,1} v_1 + \ldots + a_{m,1} v_m) + \ldots + b_k(a_{1,k} v_1 + \ldots + a_{m,k} v_m)
\]

By rearrange the coefficients, we have

\[
w = (b_1 a_{1,1} + b_2 a_{1,2} + \ldots + b_k a_{1,k}) v_1 + (b_1 a_{2,1} + b_2 a_{2,2} + \ldots + b_k a_{2,k}) v_2 + \ldots + (b_1 a_{m,1} + b_2 a_{m,2} + \ldots + b_k a_{m,k}) v_m
\]

Question 7

Determine whether each of the following scalar-valued functions of \(n \)-vectors is linear. If it is a linear function, find its inner product representation, i.e. find an \(n \)-vector \(\alpha \) such that \(f(x) = \alpha^T x \). If it is not linear, give specific \(x, y, \alpha, \beta \) such that

\[
f(\alpha x + \beta y) \neq \alpha f(x) + \beta f(y)
\]

(a) \(f(x) = \max_k x_k - \min_k x_k \) (The spread of values of the vector).

(b) \(f(x) = x_n - x_1 \) (The difference of last element and the first).

(c) \(f(x) = \) The median of an \(n \)-vector, suppose \(n = 2k + 1 \) is odd, then the median is the \((k+1)\)th largest number among all entries of \(x \).

(d) Define \(x_{n+1} = f(x_n) = x_n + (x_n - x_{n-1}) \), for \(n \geq 2 \) (This is a simple prediction of what \(x_{n+1} \) should be based on a straight line drawn through \(x_n \) and \(x_{n-1} \).
Solution

(a) not true, i.e \(x = (1, 0), y = (-1, 0), \alpha = -1, \beta = 1 \)
\[
f(\alpha x + \beta y) = f((-2, 0)) = 2.
\]
\[
\alpha f(x) + \beta f(y) = -1(1 - 0) + 1(0 - (-1)) = 0
\]

(b)
\[
f(\alpha x + \beta y) = (\alpha x_n + \beta y_n) - (\alpha x_1 - \beta y_1) = \alpha(x_n - x_1) + \beta(y_n - y_1)
\]
\[
\alpha f(x) + \beta f(y) = \alpha(x_n - x_1) + \beta(y_n - y_1)
\]

So this is linear.

i.e \(f(x) = x_n - x_1 \), then \(f(x) = a^T x \), where \(a^T = (-1, 0, 0, \ldots, 0, 1) \)

(c) not true, i.e \(x = (-1, 0, 1), y = (1, 0, 1), \alpha = 0.5, \beta = 1 \)
\[
f(\alpha x + \beta y) = f((0.5, 0, 1.5)) = 0.5
\]
\[
\alpha f(x) + \beta f(y) = 0.5 \ast 0 + 1 \ast 0 = 0
\]

(d) This question was ill-posed - sorry.

Question 8

Clustering a collection of vectors into \(k = 2 \) groups is called 2-way partitioning, since we are partitioning the vector into 2 groups, with index sets \(G_1 \) and \(G_2 \). Suppose we run k-means, with \(k = 2 \), on the n-vectors \(x_1, \ldots, x_n \) with \(x_i \in \mathbb{R}^n \).

Show that there is a nonzero vector \(w \) and a scalar \(v \) that satisfy
\[
w^T x_i + v \geq 0 \text{ for } i \in G_1
\]
\[
w^T x_i + v \leq 0 \text{ for } i \in G_2
\]

In other words, the affine function \(f(x) = w^T x + v \) is greater than or equal to zero in the first group, and less than or equal to zero in the second group. This is called the linear separation of the two groups. Hint: Consider the function \(\|x - z_1\|^2 - \|x - z_2\|^2 \), where \(z_1 \) and \(z_2 \) are the group representatives.
Solution,

Let $x_i \in G_1$ WLOG, then by definitions of clustering,

$$\|x_i - z_1\|^2 \leq \|x_i - z_2\|^2$$

Therefore, we must have

$$\|x_i\|^2 - 2\langle x_i, z_1 \rangle + \|z_1\|^2 \leq \|x_i\|^2 - 2\langle x_i, z_2 \rangle + \|z_2\|^2$$

Using inner product algebra, we must have

$$2\langle x_i, z_2 - z_1 \rangle + \|z_1\|^2 - \|z_2\|^2 \leq 0$$

Similarly, if $x_i \in G_2$, then by definition of clustering,

$$\|x_i - z_1\|^2 \geq \|x_i - z_2\|^2$$

Therefore, we must have

$$\|x_i\|^2 - 2\langle x_i, z_1 \rangle + \|z_1\|^2 \geq \|x_i\|^2 - 2\langle x_i, z_2 \rangle + \|z_2\|^2$$

Using inner product algebra, we must have

$$2\langle x_i, z_2 - z_1 \rangle + \|z_1\|^2 - \|z_2\|^2 \geq 0$$

Hence, if we let $w = z_1 - z_2$ and $v = \|z_2\|^2 - \|z_1\|^2$, where z_1 and z_2 are any group representatives from G_1 and G_2, this must exist and satisfies the condition.