Assignment 2

MATH 7502 - Semsester 2, 2018

Mathematics for Data Science 1

Created by Zhihao Qiao, Maria Kleshnina and Yoni Nazarathy

Question 1

(a) Find the general solutions of the system whose augmented matrix is given by

$$
\left[\begin{array}{ccccc}
1 & -7 & 0 & 6 & 5 \\
0 & 0 & 1 & -2 & -3 \\
-1 & 7 & -4 & 2 & 7
\end{array}\right]
$$

(b) Under what condition on b_{1}, b_{2}, b_{3} is this system solvable?

$$
\begin{aligned}
& x+2 y-2 z=b_{1} \\
& 2 x+5 y-4 z=b_{2} \\
& 4 x+9 y-8 z=b_{3} .
\end{aligned}
$$

(c) Give an exmaple of an incosistent undetermined system of two equations with three unknowns.

Solution

(a) The RREF of the argumented matrix is

$$
\left[\begin{array}{ccccc}
1 & -7 & 0 & 6 & 5 \\
0 & 0 & 1 & -2 & -3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The last row is all zero, therefore we have infinite number of solutions.

$$
\begin{gathered}
x_{3}-x_{4}=-3 \\
x_{1}-7 x_{2}+6 x_{4}=5
\end{gathered}
$$

we have two free varaibles x_{4} and x_{2}, therefore we have the general solutions

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
5+7 x_{2}-6 x_{4} \\
x_{2} \\
-3+x_{4} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
7 \\
1 \\
0 \\
0
\end{array}\right] x_{2}+\left[\begin{array}{c}
-6 \\
0 \\
1 \\
1
\end{array}\right] x_{4}+\left[\begin{array}{c}
5 \\
0 \\
-3 \\
0
\end{array}\right]
$$

(b) The rref of the row reduced matrix is

$$
\left[\begin{array}{cccc}
4 & 9 & -8 & b_{3} \\
0 & 0.5 & 0 & \frac{2 b_{2}-b_{3}}{2} \\
0 & 0 & 0 & \frac{2 b_{1}+b_{2}-b_{3}}{2}
\end{array}\right]
$$

Therefore, it has solution only if

$$
2 b_{1}+b_{2}-b_{3}=0
$$

(c)

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1 \\
& x_{1}+x_{2}+x_{3}=0
\end{aligned}
$$

Question 2

(a) Let $v_{1}=\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right], v_{2}=\left[\begin{array}{c}-3 \\ 1 \\ 8\end{array}\right]$, and $y=\left[\begin{array}{c}h \\ -5 \\ -3\end{array}\right]$. For what value(s) of h is y in the plane spanned by v_{1} and v_{2}.
(b) Explain why $\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$ is a basis for R^{2} (Hint: Write e_{1} and e_{2} as linear combinations of these vectors.)
(c) Find three different bases for the column space of $U=\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0\end{array}\right]$. Then find two different bases for the row space of U.

Solution

(a) we try to write

$$
y=a_{1} y_{1}+a_{2} y_{2}
$$

, therefore we have a set of linear equations

$$
\begin{gathered}
a_{1}-3 a_{2}=h \\
a_{2}=-5 \\
-2 a_{1}+8 a_{2}=-3
\end{gathered}
$$

The solutions is $a_{1}=-\frac{37}{2}$, therefore, $h=-\frac{7}{2}$
(b)since the base of R^{2} is e_{1} and e_{2}, therefore, have

$$
e_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{2}{3}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+\frac{1}{3}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

and

$$
e_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=-\frac{1}{3}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+\frac{1}{3}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

(c) The row bases are the first row and second row.

Since the first and second row contains a pivot, therefore the column bases are the first and second column.

Question 3

Consider the transofrmation $T: R^{3} \rightarrow R^{3}$ that projects vectors onto the line $l=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] . t \in R$
(a) Find a formula for $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)$, and prove that T is a linear transformation.
(b) Find matrix A, asssociated with T.
(c) Determine the relationship between the row space of $A \operatorname{row}(A)$ and the line l.
(d) Determine the null space, $\operatorname{Null}(A)$.

Solution

(a) if we project a vector onto the line, which is

$$
\operatorname{proj}_{v}\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\frac{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]}{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
x+z \\
0 \\
x+z
\end{array}\right]
$$

(b) we want to find a matrix that $T(v)=A v$, which is

$$
A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
x+z \\
0 \\
x+z
\end{array}\right]
$$

Obviously,

$$
A=\left[\begin{array}{ccc}
0.5 & 0 & 0.5 \\
0 & 0 & 0 \\
0.5 & 0 & 0.5
\end{array}\right]
$$

(c) The row spance of A has basis $\{1,0,1\}$, which is the same as the directional vector of the line l.
(d) The null space of A is that

$$
x+z=0
$$

, which is

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] y
$$

Therefore, the it is the vector space spanned by the basis $\{(1,0,-1),(0,1,0)\}$.

Question 4

(a) Define $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]$, Find the eigenvalues and associated eigenvectors of A .
(b) Can you represent $\left[\begin{array}{c}8 \\ 10\end{array}\right]$ as a linear combination of the eigenvectors? If so, do so.
(c) Consider the linear transformation $T: R^{2} \rightarrow R^{2}$ where $T(v)=A v$. Suppose n is a postive integer and we write $T^{n}: R^{2} \rightarrow R^{2}$ for the composition of T with itself n times. Use your answer in (a) and (b) to calculate

$$
T^{47}\left(\left[\begin{array}{c}
8 \\
10
\end{array}\right]\right)
$$

Solution

(a) The eigenvalue of A is we have

$$
\operatorname{det}(A-\lambda A)=-\lambda+\lambda^{2}-2
$$

solving that the eigenvalues are $\lambda_{1}=2, \lambda_{2}=-1$.
for $\lambda_{1}=2$, , we have

$$
\left[\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=2\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

we have

$$
y=2 x, 2 x+y=2 y
$$

the egien vectors are $v_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
for $\lambda_{2}=-1$,, we have

$$
\left[\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=-\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

we have

$$
y=-x, 2 x+y=-y
$$

the egien vectors are $v_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
(b) This is $6 v_{1}-2 v_{2}$.
(c) We have

$$
T^{47}\left(\left[\begin{array}{c}
8 \\
10
\end{array}\right]\right)=T^{47}\left(6 v_{1}-2 v_{2}\right)=6 T^{47}\left(v_{1}\right)-2 T^{47}\left(v_{2}\right)=(6)\left(\lambda_{1}^{47}\right) v_{1}-(2)\left(\lambda_{2}^{47}\right) v_{2}
$$

Question 5

Suppose we have matrices A, B, X, and Y with $A X=B Y$.
(a) Give an example showing that $A \neq 0$ is not enough to conclude that $X=Y$.
(b) Show that if A is left-invertible, we can conlcude from $A X=A Y$ that $X=Y$.
(c) Show that if A is not left-invertible, there are matrices X and Y with $X \neq Y$, and $A X=A Y$.

Solution

(a) for example if we have A and X are identity matrix, and $Y=B^{-1}$ where B is not an identity matrix..
(b)

$$
\begin{aligned}
A X & =A Y \\
A^{-1} A X & =A^{-1} A Y \\
X & =Y
\end{aligned}
$$

(c)

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
X & =\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \\
Y & =\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$A X=A Y=0$, but $X \neq Y$.

Question 6

Consider the stacked vectors

$$
c_{1}=\left[\begin{array}{l}
a_{1} \\
b_{1}
\end{array}\right], \ldots \ldots c_{k}=\left[\begin{array}{l}
a_{k} \\
b_{k}
\end{array}\right]
$$

where a_{1}, \ldots, a_{k} are n-vectors and b_{1}, \ldots, b_{k} are m-vectors. For each case, either prove or provide a counter example.
(a) Suppose a_{1}, \ldots, a_{k} are linearly independent (we make no assumptions about b_{1}, \ldots, b_{k}). Can we conclude that the stacked vectors c_{1}, \ldots, c_{k} are linearly indepndent?
(b) Suppose a_{1}, \ldots, a_{k} are linearly dependent (we make no assumptions about b_{1}, \ldots, b_{k}). Can we conclude that the stacked vectors c_{1}, \ldots, c_{k} are linearly depndent?

Solution

(a) Suppose $m_{1} c_{1}+\ldots m_{k} c_{k}=0$, and m_{i} are real coefficients. This is equivalent that

$$
\left[\begin{array}{c}
m_{1} a_{1}+\ldots+m_{k} a_{k} \\
m_{1} b_{1}+\ldots+m_{k} b_{k}
\end{array}\right]=0
$$

Since a_{i} are linearly independent, therefore, the first row is true only if $m_{1}=m_{2}=\ldots=m_{k}=0$
Hence it is enough to conlcude the stack vectors are also linearly independent.
(b) Similar to above, if a_{1}, \ldots, a_{k} are linearly dependent, but if b_{1}, \ldots, b_{k} are linearly independent, then stacked vectors are linearly independent, therefore the second statement is wrong.

Question 7

Let $G \in R^{m \times n}$ represent a contignecy matrix of m students who are members of n groups with

$$
G_{i j}= \begin{cases}1 & \text { student } \mathrm{i} \text { is in group } \mathrm{j} \\ 0 & \text { student } \mathrm{i} \text { is not in group } \mathrm{j}\end{cases}
$$

(a) What is the meaning of the 3rd column of G ?
(b) What is the meaning of the 2 nd row of G ?
(c) Give a simple formula for the n-vectors M, where M_{i} is the total membership in the group i.
(d) Interpret $\left(G G^{T}\right)_{i j}$ in simple Enlgish.
(e) Interpret $\left(G^{T} G\right)_{i j}$ in simple English.

Solution

(a) The third column is $G_{i 3}$, which determines the group members in group 3.
(b) The 2nd row is $G_{2 j}$, which determines which groups does student 2 attend to .
(c)

$$
M=\left[\begin{array}{llll}
1 & 1 & \ldots & 1
\end{array}\right] \times G
$$

. The left has n entries of 1 .
The product is the sum of each column, which is the total membership in each group.
(d) $\left(G G^{T}\right)_{i j}$ means how many groups in common of student i and student j attend to .
(e) $\left(G^{T} G_{i j}\right)$ means how many students in common does group i and group j have.

Question 8

An n-vector x is symmetric if $x_{k}=x_{n-k+1}$ for $k=1, \ldots, n$. It is anti-symmetric if $x_{k}=-x_{n-k+1}$ for $k=1, \ldots n$.
(a) Show that every vector x can be decomposed in a unique way as sum $x=x_{s}+x_{a}$ of a symmetric vector x_{s} and an anti-symmetric vector x_{a}.
(b) Find matrices A_{s} and A_{a} such that $x_{s}=A_{s} x$, and $x_{a}=A_{a} x$ for all x.

Solution

(a) To prove this, it is obvious that the sum of symmetric vectors are symmetric, and the sum of antisymmetric vectors are anti-symmetric.\$.
and each vector can be write as an unique decomposition of the elementary bases e_{1}, \ldots, e_{n}.

Suppose

$$
x=a_{1} e_{1}+\ldots a_{n} e_{n}
$$

if n is even, (WLOG we give a simple example of $n=4$

$$
\begin{aligned}
x & =a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}+a_{4} e_{4} \\
& =\frac{1}{2}\left(\left(a_{1}+a_{4}\right) e_{1}+\left(a_{1}-a_{4}\right) e_{1}+\left(a_{2}+a_{3}\right) e_{2}+\left(a_{2}-a_{3}\right) e_{2}+\left(a_{3}+a_{2}\right) e_{3}+\left(a_{3}-a_{2}\right) e_{3}+(\right. \\
& =\frac{1}{2}\left(\left(a_{1}+a_{4}\right)\left(e_{1}+e_{4}\right)+\left(a_{2}+a_{3}\right)\left(e_{2}+e_{3}\right)\right)+\frac{1}{2}\left(\left(a_{1}-a_{4}\right) e_{1}+\left(a_{4}-a_{1}\right) e_{4}+\left(a_{2}-a_{3}\right) e\right.
\end{aligned}
$$

This decomposites a vector into a symmetric and anti-symmetric part and it is unique.
if n is odd, (WLOG we give a simple example of $n=5$),

$$
\begin{aligned}
x & =a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}+a_{4} e_{4}+5 e_{5} \\
& =\frac{1}{2}\left(\left(a_{1}+a_{5}\right) e_{1}+\left(a_{1}-a_{5}\right) e_{1}+\left(a_{2}+a_{4}\right) e_{2}+\left(a_{2}-a_{4}\right) e_{2}+2 e_{3}+\left(a_{4}+a_{2}\right) e_{4}+\left(a_{4}-a_{2}\right)\right. \\
& =\frac{1}{2}\left(\left(a_{1}+a_{5}\right)\left(e_{1}+e_{5}\right)+\left(a_{2}+a_{4}\right)\left(e_{2}+e_{4}\right)+e_{3}\right)+\frac{1}{2}\left(\left(a_{1}-a_{5}\right) e_{1}+\left(a_{5}-a_{1}\right) e_{5}+\left(a_{2}-\right.\right.
\end{aligned}
$$

This decomposite a vector into a symmetric and anti-symmetric part and it is also unique..
(b)

