Assignment 3

MATH 7502 - Semsester 2, 2018

Mathematics for Data Science 2

Created by Zhihao Qiao, Maria Kleshnina and Yoni Nazarathy

Question 1

Consider the following recurision,

$$
x_{t+1}=A_{1} x_{t}+A_{2} x_{t-1}, \quad, t=2,3, \ldots
$$

where x_{t} is n-vector and A_{1} and A_{2} are $n \times n$ matrices. Define $z_{t}=\left(x_{t}, x_{t-1}\right)$.
Show that z_{t} satisfies the linear dynamical system equation $z_{t+1}=B z_{t}$, for $t=2,3, \ldots$, where B is a $(2 n) \times(2 n)$ matrix.

Solution

z_{t} is a stack vector with size $(2 n)$, which is

$$
z_{t}=\left[\begin{array}{c}
x_{t} \\
x_{t-1}
\end{array}\right]
$$

Now Let

$$
B=\left[\begin{array}{cc}
A_{1} & 0_{n} \\
0_{n} & A_{2}
\end{array}\right]
$$

0_{n} denotes that an $n \times n$ matrix with all zeros.
Therefore, we have

$$
B z_{t}=\left[\begin{array}{cc}
A_{1} & 0_{n} \\
0_{n} & A_{2}
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
x_{t-1}
\end{array}\right]=A_{1} x_{t}+A_{2} x_{t-1}
$$

Question 2

Consider the Fibonacci sequence $y_{0}, y_{1}, y_{2}, \ldots$ with $y_{0}=0, y_{1}=1, y_{2}=1, y_{3}=2, \ldots$, and for $t=2,3, \ldots, y_{t}$ is the sum of the previous two terms y_{t-1} and y_{t-2}.
(a) Express the Fibonacci sequence as a time-invaraint dynamical system wit state $x_{t}=\left(y_{t}, y_{t-1}\right)$ and output y_{t} for $t=1,2,3 \ldots$ as

$$
x_{t+1}=A x_{t}
$$

(b)For the matrix, A, compute the eigenvalues and describe the Fibonnaci sequence interms of eigevnalues and eigenvectors. How does the golden ratio play a role?

Solution

(a) we know that $y_{t+1}=y_{t}+y_{t-1}$
therefore

$$
\begin{gathered}
{\left[\begin{array}{c}
y_{t} \\
y_{t-1}
\end{array}\right]=\left[\begin{array}{c}
y_{t-1}+y_{t-2} \\
y_{t-1}
\end{array}\right]=A\left[\begin{array}{l}
y_{t-1} \\
y_{t-2}
\end{array}\right]} \\
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
\end{gathered}
$$

(b) The eigenvalues of A are $(A-\lambda I)=0$ we have the quadratic

$$
\lambda^{2}-\lambda-1=0
$$

Therefore, the eigenvalues are $\lambda_{1}=\frac{1+\sqrt{5}}{2}$ and $\lambda_{2}=\frac{1-\sqrt{5}}{2}, \lambda_{1}$ is the golden ratio.
The eigenvectors of λ_{1} is

$$
v_{1}=\left[\begin{array}{c}
\frac{1+\sqrt{5}}{2} \\
1
\end{array}\right]
$$

and the eigenvectors of λ_{2} is

$$
v_{1}=\left[\begin{array}{c}
\frac{1-\sqrt{5}}{2} \\
1
\end{array}\right]
$$

Question 3

In the sepcial case $n=1$, the general least square problem reduces to finding a scalar x that minimizes $\|a x-b\|^{2}$, where a and b are m-vectors. Assuming a and b are nonzero, show that $\|a \hat{x}-b\|^{2}=\|b\|^{2} \sin ^{2}(\theta)$, where $\theta=\angle(a, b)$.

Solution

correspond least square problem of this one is

$$
f(x)=\left(a_{1} x-b_{1}\right)^{2}+\left(a_{2} x-b_{2}\right)^{2}+\ldots+\left(a_{m} x-b_{m}\right)^{2}
$$

set the derivative of $f(x)$ to be zero, which is

$$
\begin{aligned}
& f^{\prime}(x)=2 a_{1}\left(a_{1} x-b_{1}\right)+2 a_{2}\left(a_{2} x-b_{2}\right)+\ldots+2 a_{m}\left(a_{m} x-b_{m}\right)=0 \\
& 2\left[\left(a_{1}\right)^{2}+\left(a_{2}\right)^{2}+\ldots+\left(a_{m}\right)^{2}\right] x-2\left(a_{1} b_{1}+a_{2} b_{2}+\ldots a_{m} b_{m}\right)=0 \\
& \qquad 2 x\left(a^{T} a\right)-2 a^{T} b=0 \\
& \hat{x}=\frac{a^{T} b}{a^{T} a} \\
& \begin{aligned}
\left\|a\left(\frac{a^{T} b}{a^{T} a}\right)-b\right\|^{2} & =\left\|\frac{a^{T} b}{a^{T} a}\right\|^{2}\|a\|^{2}+\|b\|^{2}-2\left\|\frac{a^{T} b}{a^{T} a}\right\|\left\|a^{T} b\right\| \\
& =\frac{\left\|a^{T} b\right\|^{2}}{\|a\|^{2}}+\|b\|^{2}-2 \frac{\left\|a^{T} b\right\|^{2}}{\|a\|^{2}} \\
& =\|b\|^{2}\left(1-\frac{\left\|a^{T} b\right\|^{2}}{\|a\|^{2}\|b\|^{2}}\right) \\
& =\|b\|^{2}\left(1-\cos ^{2}(\theta)\right) \\
& =\|b\|^{2} \sin ^{2}(\theta) .
\end{aligned}
\end{aligned}
$$

Question 4

Consider a time-invaraint linear dynamical system with offset

$$
x_{t+1}=A x_{t}+c
$$

where x_{t} is the state n -vector. We say that a vector z is an equilibrium point of the linear dynamical system if $x_{1}=z$ implies $x_{2}=z, x_{3}=z, \ldots$
(a)Find a matrix F and a vector g for which the set of linear equations $F z=g$ characterizes equilibrium points. (This means: If z is an equilibrium point, then $F z=g$; conversely if $F z=g$, then z is an equilibrium point.)

Express F and g interms of A, c any standard matrices or vectors and matrix and vector operations.

Solution

if z is an equilibrium point, we have

$$
\begin{aligned}
z & =A z+c \\
A(z) & =A(A z)+A(c) \\
A(z)-A(A z) & =A(c) \\
A(I-A) z & =A(c)
\end{aligned}
$$

Therefore $F=A(I-A)$ and $g=A(c)$.
Now if

$$
\begin{aligned}
F z & =g \\
A(I-A) z & =A(c) \\
(I-A) z & =c \\
z-A z & =c \\
z & =A z+c
\end{aligned}
$$

Question 5

Suppose that $m \times n$ matrix Q has orthonormal columns and b is an m-vector. Show that $\hat{x}=Q^{T} b$ is the vecotr that minimizes $\|Q x-b\|^{2}$.

Comment on the complexity of find \hat{x} given Q and b in this case. Compare the complexity with it is a general least squares problem and Q is a coefficient matrix.

Solution

if $\hat{x}=Q^{T} b$, and if Q has orthonomarl columns, then

$$
\begin{aligned}
& Q Q^{T}=I \\
&\|Q \hat{x}-b\|^{2}=\left\|Q Q^{T} b-b\right\|^{2} \\
&=\|b-b\|^{2} \\
&=0
\end{aligned}
$$

Question 6

Suppose $m \times n$ matrix A has linearly independent columns, and b is a m-vector. let $\hat{x}=A^{\dagger} b$ denote the least squares approximate solution of $A x=b$.
(a) Show that for any n-vector $x,(A x)^{T} b=(A x)^{T}(A \hat{x})$. Hint: Use $(A x)^{T} b=x^{T}\left(A^{T} b\right)$, and $\left(A^{T} A\right) \hat{x}=A^{T} b$.
(b) Show that when $A \hat{x}$ and b are both nonzero, we have

$$
\frac{(A \hat{x})^{T} b}{\|A \hat{x}\|\|b\|}=\frac{\|A \hat{x}\|}{\|b\|}
$$

(c) The choice of $x=\hat{x}$ minimizes the distance between $A x$ and b, Show that $x=\hat{x}$ also minimizes the angle between $A x$ and b.

Solution

(a) we have

$$
\begin{aligned}
(A x)^{T} b & =x^{T}\left(A^{T} b\right) \\
& =x^{T}\left(A^{T} A\right) \hat{x} \\
& =(A x)^{T}(A \hat{x})
\end{aligned}
$$

(b) using (a), we have

$$
(A \hat{x})^{T} b=(A \hat{x})^{T}(A \hat{x})
$$

Therefore

$$
\begin{aligned}
\frac{(A \hat{x})^{T} b}{\|A \hat{x}\|\|b\|} & =\frac{(A \hat{x})^{T}(A \hat{x})}{\|A \hat{x}\|\|b\|} \\
& =\frac{\|A \hat{x}\|^{2}}{\|A \hat{x}\|\|b\|} \\
& =\frac{\|A \hat{x}\|}{\|b\|}
\end{aligned}
$$

(c) By definition, the angle between $A x$ and b is defined as

$$
\theta=\cos ^{-1}\left(\frac{(A x)^{T} b}{\|A x\|\|b\|}\right)=\cos ^{-1}\left(\frac{\|A x\|}{\|b\|}\right)
$$

from (b), since $x=\hat{x}$ is the least square approximation, therefore $\|A \hat{x}\|$ is minimized for all x, therefore, θ is also minimized in this expression.

Question 7

Suppose A is an $m \times n$ matrix with linearly independent columns and $Q R$ factorization $A=Q R$, and b is the m-vector. The vector $A \hat{x}$ is the linear combination of the columns of A that is closet to the vector b, i.e., it is the projection of b onto the set of linear combinations of the columns of A.
(a) Show that $A \hat{x}=Q Q^{T} b$.
(b) Show that $\|A \hat{x}-b\|^{2}=\|b\|^{2}-\left\|Q^{T} b\right\|^{2}$.

Solution

(a) If \hat{x} is a solution of the least quare problem, then

$$
\begin{aligned}
\hat{x} & =\left(A^{T} A\right)^{-1} A^{T} b \\
\hat{x} & =A^{-1}\left(A^{T}\right)^{-1)} A^{T} b \\
A \hat{x} & =\left((Q R)^{T}\right)^{-1}(Q R)^{T} b \\
& =\left(R^{T} Q^{T}\right)^{-1}\left(R^{T} Q^{T}\right) b \\
& =\left(Q^{T}\right)^{-1}\left(R^{T}\right)^{-1} R^{T} Q^{T} b \\
& =\left(Q^{-1}\right)^{-1} Q^{T} b \\
& =Q Q^{T} b
\end{aligned}
$$

(b)

First consider the norm

$$
\left\|Q Q^{T} b\right\|^{2}=\left(Q Q^{T} b, Q Q^{T} b\right)=\left(Q^{T} Q Q^{T} b, Q^{T} b\right)=\left(Q^{T} b, Q^{T} b\right)=\left\|Q^{T} b\right\|^{2}
$$

and the norm

$$
\begin{aligned}
\left(Q Q^{T} b, b\right) & =\left(Q^{T} Q Q^{T} b, Q^{T} b\right)=\left(Q^{T} b, Q^{T} b\right)=\left\|Q^{T} b\right\|^{2} \\
\|A \hat{x}-b\|^{2} & =\left(Q Q^{T} b, Q Q^{T} b\right)-2\left(Q^{T} Q Q^{T} b, Q^{T} b\right)+\|b\|^{2} \\
& =\left\|Q^{T} b\right\|^{2}-2\left\|Q^{T} b\right\|^{2}+\|b\|^{2} \\
& =\|b\|^{2}-\left\|Q^{T} b\right\|^{2}
\end{aligned}
$$

Question 8

A generalization of the least squares problem adds an affine function to the least sqres objective

$$
\operatorname{minimize} \quad\|A x-b\|^{2}+c^{T} x+d
$$

where x is an n-vector as a variable to be chosen, and the data are the $m \times n$ matrix A, the m -vector b, the n-vector c. and the number d. The columns of A are linearly indeppendent.

Show that that objective of the problem above can be expressed in the form

$$
\|A x-b\|^{2}+c^{T} x+d=\|A x-b+f\|^{2}+g
$$

for some m-vecotr f and some constant g. It follows that we can solve the generalized least squares problem by minimizing $\|A x-(b-f)\|$, an ordinary least squares problem with solution $\hat{x}=A^{\dagger}(b-f)$.

Hint: Express the norm squared term on the right-hand side as $\|(A x-b)+f\|^{2}$ and expand it.

Solution

If we expand the term

$$
\begin{aligned}
\|(A x-b)+f\|^{2} & =\|A x-b\|^{2}+2 f^{T}(A x-b)+\|f\|^{2} \\
& =\|A x-b\|^{2}+2 f^{T} A x-2 f^{T} b+\|f\|^{2} \\
& =\|A x-b\|^{2}+2\left(A^{T} f\right)^{T} x+\left(\|f\|^{2}-2 f^{T} b\right)
\end{aligned}
$$

Therefore, $c=A^{T} f$, and $d=\|f\|^{2}-2 f^{T} b$

