Assignment 2

MATH 7502 - Semsester 2, 2018

Mathematics for Data Science 1

Created by Zhihao Qiao, Maria Kleshnina and Yoni Nazarathy

Question 1

(a) Find the general solutions of the system whose augmented matrix is given by $\begin{bmatrix} 1 & -7 & 0 & 6 & 5 \end{bmatrix}$

	1	-7	0	6	5	
	0	0	1	-2	-3	
	1	7	-4	2	7	
(b) Under what condition on b_1, b_2, b_3	is this	s syste	m solv	vable?		
		x + 2y	-27	$= h_1$		

$$2x + 5y - 4z = b_2$$

$$4x + 9y - 8z = b_3.$$

(c) Give an exmaple of an incosistent undetermined system of two equations with three unknowns.

Question 2

(a) Let
$$v_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} -3 \\ 1 \\ 8 \end{bmatrix}$, and $y = \begin{bmatrix} h \\ -5 \\ -3 \end{bmatrix}$. For what value(s) of h is y in the plane spanned by v_1

and v_2 .

(b) Explain why $\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ is a basis for R^2 (Hint: Write e_1 and e_2 as linear combinations of these vectors.)

(c) Find three different bases for the column space of $U = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$. Then find two different bases for the row space of U.

Question 3

Consider the transoftrmation $T: \mathbb{R}^3 \to \mathbb{R}^3$ that projects vectors onto the line $l = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. $t \in \mathbb{R}$

(a) Find a formula for
$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right)$$
, and prove that T is a linear transformation.

- (b) Find matrix A, asssociated with T.
- (c) Determine the relationship between the row space of A row(A) and the line l.
- (d) Determine the null space, Null(A).

Question 4

(a) Define
$$A = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$$
, Find the eigenvalues and associated eigenvectors of A.
(b) Can you represent $\begin{bmatrix} 8 \\ 10 \end{bmatrix}$ as a linear combination of the eigenvectors? If so , do so.

(c) Consider the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ where T(v) = Av. Suppose *n* is a postive integer and we write $T^n : \mathbb{R}^2 \to \mathbb{R}^2$ for the composition of *T* with itself *n* times. Use your answer in (a) and (b) to calculate

T^{47}	(8	$ \rangle$
1		10)

Question 5

Suppose we have matrices A, B, X, and Y with AX = BY.

- (a) Give an example showing that $A \neq 0$ is not enough to conclude that X = Y.
- (b) Show that if A is left-invertible, we can conlcude from AX = AY that X = Y.
- (c) Show that if A is not left-invertible, there are matrices X and Y with $X \neq Y$, and AX = AY.

Question 6

Assignment 2

Consider the stacked vectors

$$c_1 = \begin{bmatrix} a_1 \\ b_1 \end{bmatrix}, \ldots, c_k = \begin{bmatrix} a_k \\ b_k \end{bmatrix}.$$

where a_1, \ldots, a_k are n-vectors and b_1, \ldots, b_k are m-vectors. For each case, either prove or provide a counter example.

(a) Suppose a_1, \ldots, a_k are linearly independent (we make no assumptions about b_1, \ldots, b_k). Can we conclude that the stacked vectors c_1, \ldots, c_k are linearly independent?

(b) Suppose a_1, \ldots, a_k are linearly dependent (we make no assumptions about b_1, \ldots, b_k). Can we conclude that the stacked vectors c_1, \ldots, c_k are linearly dependent?

Question 7

Let $G \in \mathbb{R}^{m \times n}$ represent a contignecy matrix of *m* students who are members of *n* groups with

$$G_{ij} = \begin{cases} 1 & \text{student i is in group j} \\ 0 & \text{student i is not in group j} \end{cases}$$

(a) What is the meaning of the 3rd column of G?

- (b) What is the meaning of the 2nd row of G?
- (c) Give a simple formula for the n-vectors M, where M_i is the total membership in the group i.

(d) Interpret $(GG^T)_{ii}$ in simple Enlgish.

(e) Interpret $(G^T G)_{ij}$ in simple English.

Question 8

An n-vector x is symmetric if $x_k = x_{n-k+1}$ for k = 1, ..., n. It is anti-symmetric if $x_k = -x_{n-k+1}$ for k = 1, ..., n.

(a) Show that every vector x can be decomposed in a unique way as sum $x = x_s + x_a$ of a symmetric vector x_s and an anti-symmetric vector x_a .

(b) Show that the symmetric and anti-symmetric parts x_s and x_a are linear functions of x. Given matrices A_s and A_a such that $x_s = A_s x$, and $x_a = A_a x$ for all x.

Question 9

For descriptions of y below, express it as y = Ax for some A (You should specify A).

(a) y_i is the difference between x_i and the average of x_1, \ldots, x_{i-1} . (We take $y_1 = x_1$).

(b) y_i is the difference between x_i and the average value of all other x_j . i.ie the average of $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$

Question 10

Write your own code to implement the Grah-Schmidt procedure. Test your code and find an orthogonal basis of

$$\left\{ \begin{bmatrix} 1\\2\\3\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix} \right\}.$$

Question 11

The following code geneartes a signal together with noise.

- (a) Compute and plot the fourier transform of the signal without noise.
- (b) Compute and plot the the fourier transform with signal noise.
- (c) Corruput the signal with different white-noise, and reproduce the plot of (a) and (b).

```
In [1]:
```

```
using PyPlot
Fs = 1000;
                        #Sampling frequency
T = 1/Fs;
                        #Sampling period
L = 1500;
                        #Length of signal
t = (0:L-1)*T;
                        #Time vector
#Form a signal containing a 25 Hz sinusoid of amplitude 0.9 and a 120 Hz sinusoi
d of amplitude 1.
S = 0.9 + \sin(2 + pi + 25 + t) + \sin(2 + pi + 120 + t);
#Corrupt the signal with zero-mean white noise with a variance of 4.
X = S+2*randn(size(t));
plot(1000*t[1:50],X[1:50])
title("Signal Corrupted with Zero-Mean Random Noise")
xlabel("t (milliseconds)")
ylabel("X(t)");
```



```
In [2]:
```

```
## Compute the FFT for the term without noise
Z=abs(fft(S))
## frequency axis
f = Fs*(0:(L-1))/L;
plot(f,Z)
xlabel("f (Hz)")
ylabel("|S(f)|");
```



```
In [3]:
```

```
## Compute the FFT for the term without noise
Y=abs(fft(X))
## frequency axis
f = Fs*(0:(L-1))/L;
plot(f,Y)
xlabel("f (Hz)")
ylabel("|Y(f)|");
```


Question 12

Explain the results of the previous question. How can Fourier analysis be used in data science? Present a 1-2 paragraph subjective description.