Assignment 2

MATH 7502 - Semsester 2, 2018

Mathematics for Data Science 1

Created by Zhihao Qiao, Maria Kleshnina and Yoni Nazarathy

Question 1

(a) Find the general solutions of the system whose augmented matrix is given by

$$
\left[\begin{array}{ccccc}
1 & -7 & 0 & 6 & 5 \\
0 & 0 & 1 & -2 & -3 \\
-1 & 7 & -4 & 2 & 7
\end{array}\right]
$$

(b) Under what condition on b_{1}, b_{2}, b_{3} is this system solvable?

$$
\begin{aligned}
& x+2 y-2 z=b_{1} \\
& 2 x+5 y-4 z=b_{2} \\
& 4 x+9 y-8 z=b_{3} .
\end{aligned}
$$

(c) Give an exmaple of an incosistent undetermined system of two equations with three unknowns.

Question 2

(a) Let $v_{1}=\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right], v_{2}=\left[\begin{array}{c}-3 \\ 1 \\ 8\end{array}\right]$, and $y=\left[\begin{array}{c}h \\ -5 \\ -3\end{array}\right]$. For what value(s) of h is y in the plane spanned by v_{1} and v_{2}.
(b) Explain why $\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$ is a basis for R^{2} (Hint: Write e_{1} and e_{2} as linear combinations of these vectors.)
(c) Find three different bases for the column space of $U=\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0\end{array}\right]$. Then find two different bases for the row space of U.

Question 3

Consider the transofrmation $T: R^{3} \rightarrow R^{3}$ that projects vectors onto the line $l=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] . t \in R$
(a) Find a formula for $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)$, and prove that T is a linear transformation.
(b) Find matrix A , asssociated with T .
(c) Determine the relationship between the row space of $\mathrm{Arow}(\mathrm{A})$ and the line l.
(d) Determine the null space, $\operatorname{Null}(\mathrm{A})$.

Question 4

(a) Define $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]$, Find the eigenvalues and associated eigenvectors of A .
(b) Can you represent $\left[\begin{array}{c}8 \\ 10\end{array}\right]$ as a linear combination of the eigenvectors? If so, do so.
(c) Consider the linear transformation $T: R^{2} \rightarrow R^{2}$ where $T(v)=A v$. Suppose n is a postive integer and we write $T^{n}: R^{2} \rightarrow R^{2}$ for the composition of T with itself n times. Use your answer in (a) and (b) to calculate

$$
T^{47}\left(\left[\begin{array}{c}
8 \\
10
\end{array}\right]\right)
$$

Question 5

Suppose we have matrices A, B, X, and Y with $A X=B Y$.
(a) Give an example showing that $A \neq 0$ is not enough to conclude that $X=Y$.
(b) Show that if A is left-invertible, we can conlcude from $A X=A Y$ that $X=Y$.
(c) Show that if A is not left-invertible, there are matrices X and Y with $X \neq Y$, and $A X=A Y$.

Question 6

Consider the stacked vectors

$$
c_{1}=\left[\begin{array}{l}
a_{1} \\
b_{1}
\end{array}\right], \ldots \ldots c_{k}=\left[\begin{array}{l}
a_{k} \\
b_{k}
\end{array}\right] .
$$

where a_{1}, \ldots, a_{k} are n -vectors and b_{1}, \ldots, b_{k} are m-vectors. For each case, either prove or provide a counter example.
(a) Suppose a_{1}, \ldots, a_{k} are linearly independent (we make no assumptions about b_{1}, \ldots, b_{k}). Can we conclude that the stacked vectors c_{1}, \ldots, c_{k} are linearly indepndent?
(b) Suppose a_{1}, \ldots, a_{k} are linearly dependent (we make no assumptions about b_{1}, \ldots, b_{k}). Can we conclude that the stacked vectors c_{1}, \ldots, c_{k} are linearly depndent?

Question 7

Let $G \in R^{m \times n}$ represent a contignecy matrix of m students who are members of n groups with

$$
G_{i j}= \begin{cases}1 & \text { student } \mathrm{i} \text { is in group } \mathrm{j} \\ 0 & \text { student } \mathrm{i} \text { is not in group } \mathrm{j}\end{cases}
$$

(a) What is the meaning of the 3rd column of G ?
(b) What is the meaning of the 2 nd row of G ?
(c) Give a simple formula for the n-vectors M, where M_{i} is the total membership in the group i.
(d) Interpret $\left(G G^{T}\right)_{i j}$ in simple Enlgish.
(e) Interpret $\left(G^{T} G\right)_{i j}$ in simple English.

Question 8

An n-vector x is symmetric if $x_{k}=x_{n-k+1}$ for $k=1, \ldots, n$. It is anti-symmetric if $x_{k}=-x_{n-k+1}$ for $k=1, \ldots n$.
(a) Show that every vector x can be decomposed in a unique way as sum $x=x_{s}+x_{a}$ of a symmetric vector x_{s} and an anti-symmetric vector x_{a}.
(b) Show that the symmetric and anti-symmetric parts x_{s} and x_{a} are linear functions of x. Given matrices A_{s} and A_{a} such that $x_{s}=A_{s} x$, and $x_{a}=A_{a} x$ for all x.

Question 9

For descriptions of y below, express it as $y=A x$ for some A (You should specify A).
(a) y_{i} is the difference between x_{i} and the average of x_{1}, \ldots, x_{i-1}. (We take $y_{1}=x_{1}$).
(b) y_{i} is the difference between x_{i} and the average value of all other x_{j}. i.ie the average of $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}$

Question 10

Write your own code to implement the Grah-Schmidt procedure. Test your code and find an orthogonal basis of

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right\} .
$$

Question 11

The following code geneartes a signal together with noise.
(a) Compute and plot the fourier transform of the signal without noise.
(b) Compute and plot the the fourier transform with signal noise.
(c) Corruput the signal with different white-noise, and reproduce the plot of (a) and (b).

In [1]:
using PyPlot

```
Fs = 1000; #Sampling frequency
T = 1/Fs; #Sampling period
L = 1500; #Length of signal
t = (0:L-1)*T; #Time vector
#Form a signal containing a 25 Hz sinusoid of amplitude 0.9 and a 120 Hz sinusoi
d of amplitude 1.
S = 0.9*sin.(2*pi*25*t) + sin.(2*pi*120*t);
#Corrupt the signal with zero-mean white noise with a variance of 4.
X = S+2*randn(size(t));
plot(1000*t[1:50],x[1:50])
title("Signal Corrupted with Zero-Mean Random Noise")
xlabel("t (milliseconds)")
ylabel("X(t)");
```

Signal Corrupted with Zero-Mean Random Noise

In [2]:
\#\# Compute the FFT for the term without noise
Z=abs(fft(S))
\#\# frequency axis
$\mathrm{f}=\mathrm{Fs} *(0:(\mathrm{L}-1)) / \mathrm{L}$;
plot(f,Z)
xlabel("f (Hz)")
ylabel("|S(f)|");

In [3]:
\#\# Compute the FFT for the term without noise
$\mathrm{Y}=\mathrm{abs}(\mathrm{fft}(\mathrm{X})$)
\#\# frequency axis
$\mathrm{f}=\mathrm{Fs} *(0:(\mathrm{L}-1)) / \mathrm{L}$;
plot(f,Y)
xlabel("f (Hz)")
ylabel("|Y(f)|");

Question 12

Explain the results of the previous question. How can Fourier analysis be used in data science? Present a 12 paragraph subjective description.

