Assignment 3

MATH 7502 - Semsester 2, 2018

Mathematics for Data Science 1

Created by Zhihao Qiao, Maria Kleshnina and Yoni Nazarathy

Question 1

Consider the following recurision,

$$
x_{t+1}=A_{1} x_{t}+A_{2} x_{t-1}, \quad, t=2,3, \ldots
$$

where x_{t} is n-vector and A_{1} and A_{2} are $n \times n$ matrices. Define $z_{t}=\left(x_{t}, x_{t-1}\right)$.
Show that z_{t} satisfies the linear dynamical system equation $z_{t+1}=B z_{t}$, for $t=2,3, \ldots$, where B is a $(2 n) \times(2 n)$ matrix.

Question 2

Consider the Fibonacci sequence $y_{0}, y_{1}, y_{2}, \ldots$ with $y_{0}=0, y_{1}=1, y_{2}=1, y_{3}=2, \ldots$, and for $t=2,3, \ldots, y_{t}$ is the sum of the previous two terms y_{t-1} and y_{t-2}.
(a) Express the Fibonacci sequence as a time-invaraint dynamical system wit state $x_{t}=\left(y_{t}, y_{t-1}\right)$ and output y_{t} for $t=1,2,3 \ldots$. as

$$
x_{t+1}=A x_{t}
$$

(b)For the matrix, A, compute the eigenvalues and describe the Fibonnaci sequence interms of eigevnalues and eigenvectors. How does the golden ratio play a role?

Question 3

In the sepcial case $n=1$, the general least square problem reduces to finding a scalar x that minimizes $\|a x-b\|^{2}$, where a and b are m-vectors. Assuming a and b are nonzero, show that $\|a \hat{x}-b\|^{2}=\|b\|^{2} \sin ^{2}(\theta)$, where $\theta=\angle(a, b)$.

Question 4

Consider a time-invaraint linear dynamical system with offset

$$
x_{t+1}=A x_{t}+c
$$

where x_{t} is the state n-vector. We say that a vector z is an equilibrium point of the linear dynamical system if $x_{1}=z$ implies $x_{2}=z, x_{3}=z, \ldots$
(a) Find a matrix F and a vector g for which the set of linear equations $F z=g$ characterizes equilibrium points. (This means: If z is an equilibrium point, then $F z=g$; conversely if $F z=g$, then z is an equilibrium point.)

Fxnress F and \boldsymbol{g} interms of $A . c$ anv standard matrices or vectors and matrix and vector onerations.

Question 5

Suppose that $m \times n$ matrix Q has orthonormal columns and b is an m-vector. Show that $\hat{x}=Q^{T} b$ is the vector that minimizes $\|Q x-b\|^{2}$.

Comment on the complexity of finding \hat{x} given Q and b in this case. Compare the complexity with the general leasure square problem where Q is a coefficient matrix.

Question 6

Suppose $m \times n$ matrix A has linearly independent columns, and b is a m-vector. Let $\hat{x}=A^{\dagger} b$ denote the least squares approximate solution of $A x=b$.
(a) Show that for any n-vector $x,(A x)^{T} b=(A x)^{T}(A \hat{x})$. Hint: Use $(A x)^{T} b=x^{T}\left(A^{T} b\right)$, and $\left(A^{T} A\right) \hat{x}=A^{T} b$.
(b) Show that when $A \hat{x}$ and b are both nonzero, we have

$$
\frac{(A \hat{x})^{T} b}{\|A \hat{x}\|\|b\|}=\frac{\|A \hat{x}\|}{\|b\|}
$$

(c) The choice of $x=\hat{x}$ minimizes the distance between $A x$ and b, Show that $x=\hat{x}$ also minimizes the angle between $A x$ and b.

Question 7

Suppose A is an $m \times n$ matrix with linearly independent columns and $Q R$ factorization $A=Q R$, and b is the m-vector. The vector $A \hat{x}$ is the linear combination of the columns of A that is closet to the vector b, i.e., it is the projection of b onto the set of linear combinations of the columns of A.
(a) Show that $A \hat{x}=Q Q^{T} b$.
(b) Show that $\|A \hat{x}-b\|^{2}=\|b\|^{2}-\left\|Q^{T} b\right\|^{2}$.

Question 8

A generalization of the least squares problem adds an affine function to the least squares objective

$$
\text { minimize } \quad\|A x-b\|^{2}+c^{T} x+d
$$

where x is an n-vector as a variable to be chosen, and the data are the $m \times n$ matrix A, the m-vector b, the n-vector c. and the number d. The columns of A are linearly indeppendent.

Show that that objective of the problem above can be expressed in the form

$$
\|A x-b\|^{2}+c^{T} x+d=\|A x-b+f\|^{2}+g
$$

for some m-vector f and some constant g. It follows that we can solve the generalized least squares problem by minimizing $\|A x-(b-f)\|$, an ordinary least squares problem with solution $\hat{x}=A^{\dagger}(b-f)$.

Hint: Express the norm squared term on the right-hand side as $\|(A x-b)+f\|^{2}$ and expand it.

Question 9

A very simple model of how the economic output changes over time is $a_{t+1}=B a_{t}$, where B is an $n \times n$ matrix, $\left(a_{t}\right)_{i}$ is the economic output in sector i in year t. In this problem, we will consider the specific model with $n=4$ and

$$
B=\left[\begin{array}{cccc}
0.1 & 0.06 & 0.05 & 0.7 \\
0.48 & 0.44 & 0.10 & 0.04 \\
0.00 & 0.55 & 0.52 & 0.04 \\
0.04 & 0.01 & 0.42 & 0.51
\end{array}\right]
$$

(a) Breifly interpret B_{23}.
(b) Suppose $a_{1}=(0.6,0.9,1.3,0.05)$ plot four sector outputs and the total economic output versus t for $t=1, \ldots, 20$.

Question 10

Solve Question 12.13 from [VMLS], page 241.

Question 11

You are given a channel impulse response, the n-vector c. Your job is to find an equalizer impulse response, the n-vector h that minimizes $\left\|h * c-e_{1}\right\|^{2}$. You can assume $c_{1} \neq 0$.
(a) Explain how to find h, Apply your method to find the equalizer h for the channel $c=(1.0,0.7,-0.3,-0.1,0.05)$.
(b) Plot c, h, and $h * c$.

Question 12

Consider the linear dynamical system,

$$
\dot{x}_{t}=A x_{t} .
$$

with $x_{0}=x_{0}$ and A an $n \times n$ matrix.
Plot trajectories of such a system with $n=2$ and $x_{0}=(1,1)^{\prime}$ for the following numerical example cases:

- Both eigenvalues of A real and negative.
- Both eigenvalues of A real and positive.
- One eigenvalue real positive and one real negative.
- Both eigenvalues complex and negative.
- Pure imaginary eigenvalues.

