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Outline

Data Analysis, Machine Learning, Data Science

Context: Data Science

Fundamentals of Data Analysis

Fundamentals of Optimization

Relating Data Science and Optimization

Formulating specific data science problems as optimization problems
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Optimization and Data Science

Optimization is being revolutionized by its interactions with machine
learning and data analysis.

New algorithms, and new interest in old algorithms;

Challenging formulations and new paradigms;

Renewed emphasis on certain topics: convex optimization algorithms,
complexity, structured nonsmoothness, now nonconvex optimization.

Large research community now working on the machine learning /
optimization spectrum. The optimization / ML interface is a key
component of many top conferences (ISMP, SIOPT, NIPS, ICML,
COLT, AISTATS, ...) and journals (Math Programming, SIOPT, ....).

Wright (UW-Madison) Optimization and Data Analysis June 2018 3 / 44



Data Science
Related Terms: AI, Data Analysis, Machine Learning, Statistical Inference,
Data Mining.

Extract meaning from data: Understand statistical properties, learn
important features and fundamental structures in the data.

Use this knowledge to make predictions about other, similar data.

Highly multidisciplinary area!

Foundations in Statistics;

Computer Science: AI, Machine Learning, Databases, Parallel
Systems;

Optimization provides a toolkit of modeling/formulation and
algorithmic techniques.

Modeling and domain-specific knowledge is vital: “80% of data analysis is
spent on the process of cleaning and preparing the data.”
[Dasu and Johnson, 2003].

(Most academic research deals with the other 20%.)
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The Age of “Big Data”
New “Data Science Centers” at many institutions, new degree programs
(e.g. Undergrad Majors and MS in Data Science), new funding initiatives
(e.g. NSF’s TRIPODS).

Huge amounts of data are collected, routinely and continuously.

I Consumer and citizen data: phone calls and text, social media
apps, email, surveillance cameras, web activity, online shopping,...

I Scientific data (particle colliders, satellites, biological / genomic,
astronomical,...)

Affects everyone directly!

Powerful computers and new specialized architectures make it
possible to handle larger data sets and analyze them more thoroughly.

Methodological innovations in some areas. e.g. Deep Learning.

I Speech recognition in smart phones
I AlphaGo: Deep Learning for Go.
I Image recognition
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Typical Setup
After cleaning and formatting, obtain a data set of m objects:

Vectors of features: aj , j = 1, 2, . . . ,m.

Outcome / observation / label yj for each feature vector.

The outcomes yj could be:

a real number: regression

a label indicating that aj lies in one of M classes (for M ≥ 2):
classification

multiple labels: classify aj according to multiple criteria.

no labels (yj is null):

I subspace identification: Locate low-dimensional subspaces that
approximately contain the (high-dimensional) vectors aj ;

I clustering: Partition the aj into a few clusters.

(Structure may reveal which features in the aj are important /
distinctive, or enable predictions to be made about new vectors a.)
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Fundamental Data Analysis Task

Seek a function φ that:

approximately maps aj to yj for each j : φ(aj) ≈ yj , j = 1, 2, . . . ,m.

if there are no labels yj , or if some labels are missing, seek φ that
does something useful with the data {aj}, e.g. assigns each aj to an
appropriate cluster or subspace.

satisfies some additional properties — simplicity, structure — that
make it “plausible” for the application, robust to perturbations in the
data, generalizable to other data samples.

Can usually define φ in terms of some parameter vector x — thus
identification of φ becomes a data-fitting problem: Find the best x .

Objective function in this problem often built up of m terms that capture
mismatch between predictions and observations for data item (aj , yj).

The process of finding φ is called learning or training.
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What’s the use of the mapping φ?

Analysis: φ — especially the parameter x that defines it — reveals
structure in the data. Examples:

I Feature selection: reveal the components of vectors aj that are
most important in determining the outputs yj , and quantifies the
importance of these features.

I Uncovers some hidden structure, e.g.

F finds some low-dimensional subspaces that contain the aj ;
F find clusters that contain the aj ;
F find a decision tree that builds intuition about how outputs

yj depend on inputs aj .

Prediction: Given new data vectors ak , predict outputs yk ← φ(ak).

Wright (UW-Madison) Optimization and Data Analysis June 2018 8 / 44



Complications
The data items (aj , yj) available for training and testing are viewed as an
empirical sample drawn from some underlying reality. Want our analysis of
the sample to work well on the unknown underlying set.

noise or errors in aj and yj . Would like φ (and x) to be robust to
this — solution should generalize to perturbations of the observed
data. Often achieve this via regularized formulations.

avoid overfitting: Want to avoid overfitting to the particular
empirical sample. (Training should produce a similar result for other
samples from the same underlying data set.) Again, generalization /
regularization plays an important role in the formulation.

missing data: Vectors aj may be missing elements (but may still
contain useful information).

missing labels: Some or all yj may be missing or null —
semi-supervised or unsupervised learning.

online learning: Data (aj , yj) is arriving in a stream rather than all
known up-front.
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Optimization

In optimization, we seek to minimize some objective function by choosing
the best values for a set of variables, subject possibly to some constraints
on the variables.

The three ingredients — variables, objective function, and constraints —
are all important. They can have different characteristics that make the
optimization problem easy or hard.

The variables could be

vectors of real numbers;

vectors of binary variables {0, 1} or integers;

square or rectangular matrices of real numbers;

functions in a Hilbert space;

or some combination of all of these.
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The constraints could be

non-existent: “unconstrained” optimization;

bounds on the real and integer variables;

more complicated algebraic expressions or geometric restrictions;

positive definiteness of the matrix variables: X � 0;

uncertain (depending also on some random variable);

chance-constrained (e.g. in a list of 100 constraints, want at least 95
of them to be satisfied).

The objective function could be

smooth (multiple-times differentiable);

nonsmooth but continuous;

an expectation over some random variable: Eξf (x ; ξ) (where x is the
optimization variable and ξ is the random variable).

Some optimization problems have no objective. (In this case we simply
seek a point that satisfies the constraints — a feasible point.)
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Optimization Research

Optimization research includes

the process of formulating / modeling practical problems as
optimization problems;

studying the mathematical properties of optimization formulations,
e.g. sensitivity to uncertainty in their data;

developing computational algorithms for solving these problems, and
studying the mathematical properties of these algorithms;

developing and testing software that implements these algorithms.
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Continuous Optimization and Data Analysis

Optimization is a major source of algorithms for machine learning and data
analysis.

Optimization Formulations translate statistical principles (e.g. risk,
likelihood, significance, generalizability) into measures and functions
that can be attacked with an algorithm.

Optimization Algorithms provide practical means to solve these
problems, but the “black-box” approach often doesn’t work well.
Structure and context are important.

Duality is valuable in several cases (e.g. kernel learning).

Nonsmoothness appears often e.g. as a formulation tool to promote
generalizability, but often in a highly structured way that can be
exploited by algorithms.
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ML’s Influence on (Continuous) Optimization

The needs of ML and the ML community have also influenced
optimization greatly.

ML has a different perspective on some important algorithmic issues:

Computational complexity and global convergence rates are more
interesting.

Fast local convergence rates are less interesting, possibly because fast
convergence often cuts in below the level of accuracy required for
minimization of the empirical risk.

Prefer cheaper, approximate solutions over expensive, accurate
solutions (for the same reason).
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ML’s Influence on (Continuous) Optimization
The needs of ML (including summation form, nonsmooth regularization)
has caused revival, reexamination, and development of known approaches,
particularly first-order and “zero order” methods.

stochastic gradient

accelerated gradient

coordinate descent

conditional gradient (Frank-Wolfe)

sparse and regularized optimization e.g. forward-backward.

augmented Lagrangian, ADMM

(sampled Newton and quasi-Newton)

This trend continues in nonconvex formulations:

steepest descent (+ noise)

trust-region methods

Nonlinear conjugate gradient and L-BFGS

Newton-conjugate gradient.
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“Algorithms” in ML and Optimization
In ML, the “algorithm” is the process that maps a training data set S to a
predictor. (Sometimes randomized, e.g. stochastic gradient.)

Aim for generalizability: Predictor predicts well on unseen data.

When the ML algorithm is implemented via optimization it’s broken down
into two stages: the optimization formulation and the optimization
algorithm.

The responsibility for good generalizability thus falls both on the
optimization formulation and the optimization algorithm.

This overloads the optimization algorithm! Traditionally, optimization
algorithms were just tasked with finding the solution of the formulation.
Nowadays they have to pursue a more nebulous and unfamiliar goal.

New questions arise, e.g.

Does small-batch SGD give results with better generalizability?

Is the algorithm finding a “low-norm” solution that generalizes better?
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1

1https://blogs.sas.com/content/subconsciousmusings/2017/04/12/

machine-learning-algorithm-use/
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There’s a lot of continuous optimization here (yellow)!
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Application I: (Linear) Least Squares

min
x

f (x) :=
1

2

m∑
j=1

(aTj x − yj)
2 =

1

2
‖Ax − y‖2

2.

[Gauss, 1799], [Legendre, 1805]; see [Stigler, 1981].

Here the function mapping data to output is linear: φ(aj) = aTj x .

`2 regularization reduces sensitivity of the solution x to noise in y .

min
x

1

2
‖Ax − y‖2

2 + λ‖x‖2
2.

`1 regularization yields solutions x with few nonzeros:

min
x

1

2
‖Ax − y‖2

2 + λ‖x‖1.

Feature selection: Nonzero locations in x indicate important
components of aj .

Nonconvex separable regularizers (SCAD, MCP) have nice statistical
properties, but lead to nonconvex optimization formulations.
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`1 regularization

Including a multiple of ‖x‖1 into the objective is a standard way to induce
sparsity in the variable vector x .

f(x)
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`1 regularization

Including a multiple of ‖x‖1 into the objective is a standard way to induce
sparsity in the variable vector x .

f(x)+|x|
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`1 regularization

Including a multiple of ‖x‖1 into the objective is a standard way to induce
sparsity in the variable vector x .

f(x)+2|x|
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Application II: Matrix Completion

Regression over a structured matrix: Observe a matrix X by probing it
with linear operators Aj(X ), giving observations yj , j = 1, 2, . . . ,m. Solve
a regression problem:

min
X

1

2m

m∑
j=1

(Aj(X )− yj)
2 =

1

2m
‖A(X )− y‖2

2.

Each Aj may observe a single element of X , or a linear combination of
elements. Can be represented as a matrix Aj , so that Aj(X ) = 〈Aj ,X 〉.

Seek the “simplest” X that satisfies the observations. Nuclear-norm
(sum-of-singular-values) regularization term induces low rank on X :

min
X

1

2m
‖A(X )− y‖2

2 + λ‖X‖∗, for some λ > 0.

[Recht et al., 2010]
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Explicit Low-Rank Parametrization

Compact, nonconvex formulation is obtained by parametrizing X directly:

X = LRT , where L ∈ Rm×r , R ∈ Rn×r ,

where r is known (or suspected) rank.

min
L,R

1

2m

m∑
j=1

(Aj(LRT )− yj)
2.

For symmetric X , have L = R, so X = ZZT , where Z ∈ Rn×r .

(No need for regularizer — rank is hard-wired into the formulation.)

Despite the nonconvexity, near-global minima can be found when Aj are
incoherent. Use appropriate initialization [Candès et al., 2014],
[Zheng and Lafferty, 2015] or the observation that all local minima are
near-global [Bhojanapalli et al., 2016].
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Application III: Nonnegative Matrix Factorization

Given m × n matrix Y , seek factors L (m × r) and R (n × r) that are
element-wise positive, such that LRT ≈ Y .

min
L,R

1

2
‖LRT − Y ‖2

F subject to L ≥ 0, R ≥ 0.

Applications in computer vision, document clustering, chemometrics, . . .

Could combine with matrix completion, when not all elements of Y are
known, if it makes sense on the application to have nonnegative factors.

If positivity constraint were not present, could solve this in closed form
with an SVD, since Y is observed completely.
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Application IV: Sparse Inverse Covariance
Let Z ∈ Rp be a (vector) random variable with zero mean. Let
z1, z2, . . . , zN be samples of Z . Sample covariance matrix (estimates
covariance between components of Z ):

S :=
1

N − 1

N∑
`=1

z`z
T
` .

Seek a sparse inverse covariance matrix: X ≈ S−1.

X reveals dependencies between components of Z : Xij = 0 if the i and j
components of Z are conditionally independent.

Do nodes i and j influence each other directly, or only indirectly via other
nodes?

Obtain X from the regularized formulation:

min
X
〈S ,X 〉 − log det(X ) + λ‖X‖1, where ‖X‖1 =

∑
i ,j |Xij |.

[d’Aspremont et al., 2008, Friedman et al., 2008].
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Reveals Network Structure. Example with p = 6.

6
1

2

3

4

5

X =



∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0
0 ∗ ∗ 0 ∗ 0
0 ∗ 0 ∗ ∗ 0
0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗
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Application V: Sparse Principal Components (PCA)

Seek sparse approximations to the leading eigenvectors of the sample
covariance matrix S .

For the leading sparse principal component, solve

max
v∈Rn

vTSv = 〈S , vvT 〉 s.t. ‖v‖2 = 1, ‖v‖0 ≤ k ,

for some given k ∈ {1, 2, . . . , n}. Convex relaxation replaces vvT by an
n × n positive semidefinite proxy M:

max
M∈SRn×n

〈S ,M〉 s.t. M � 0, 〈I ,M〉 = 1, ‖M‖1 ≤ R,

where | · |1 is the sum of absolute values [d’Aspremont et al., 2007].

Adjust the parameter R to obtain desired sparsity.
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Sparse PCA (rank r)

For sparse leading rank-r eigenspace, seek V ∈ Rn×r with orthonormal
columns such that 〈S ,VV T 〉 is maximized, and V has at most k nonzero
rows. Convex relaxation:

max
M∈SRn×n

〈S ,M〉 s.t. 0 � M � I , 〈I ,M〉 ≤ r , ‖M‖1 ≤ R.

Explicit low-rank formulation is

max
F∈Rn×r

〈S ,FFT 〉 s.t. ‖F‖2 ≤ 1, ‖F‖2,1 ≤ R̄,

where ‖F‖2,1 :=
∑n

i=1 ‖Fi ·‖2.

[Chen and Wainwright, 2015]
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Application VI: Sparse + Low-Rank

Given Y ∈ Rm×n, seek low-rank M and sparse S such that M + S ≈ Y .

Applications:

Robust PCA: Sparse S represents “outlier” observations.

Foreground-Background separation in video processing.

I Each column of Y is one frame of video, each row is a single
pixel evolving in time.

I Low-rank part M represents background, sparse part S represents
foreground.

Convex formulation:

min
M,S
‖M‖∗ + λ‖S‖1 s.t. Y = M + S .

[Candès et al., 2011, Chandrasekaran et al., 2011]
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Sparse + Low-Rank: Compact Formulation

Compact formulation: Variables L ∈ Rn×r , R ∈ Rm×r , S ∈ Rm×n sparse.

min
L,R,S

1

2
‖LRT + S − Y ‖2

F + λ‖S‖1 (fully observed)

min
L,R,S

1

2
‖PΦ(LRT + S − Y )‖2

F + λ‖S‖1 (partially observed),

where Φ represents the locations of the observed entries.
[Chen and Wainwright, 2015, Yi et al., 2016].

(For well-posedness, need to assume that the “true” L, R, S satisfy certain
incoherence properties.)
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Application VII: Subspace Identification
Given vectors aj ∈ Rn with missing entries, find a subspace of Rn such
that all “completed” vectors aj lie approximately in this subspace.

If Ωj ⊂ {1, 2, . . . , n} is the set of observed elements in aj , seek X ∈ Rn×d

such that
[aj − Xsj ]Ωj

≈ 0,

for some sj ∈ Rd and all j = 1, 2, . . . .
[Balzano et al., 2010, Balzano and Wright, 2014].

Application: Structure from motion. Reconstruct opaque object from
planar projections of surface reference points.
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Application VIII: Linear Support Vector Machines

Each item of data belongs to one of two classes: yj = +1 and yj = −1.

Seek (x , β) such that

aTj x − β ≥ 1 when yj = +1;

aTj x − β ≤ −1 when yj = −1.

The mapping is φ(aj) = sign(aTj x − β).

Design an objective so that the jth loss term is zero when φ(aj) = yj ,
positive otherwise. A popular one is hinge loss:

H(x , β) =
1

m

m∑
j=1

max(1− yj(aTj x − β), 0).

Add a regularization term (λ/2)‖x‖2
2 for some λ > 0 to maximize the

margin between the classes.
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Regularize for Generalizability
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Regularize for Generalizability
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Application IX: Nonlinear SVM

Data aj , j = 1, 2, . . . ,m may not be separable neatly into two classes
yj = +1 and yj = −1. Apply a nonlinear transformation aj → ψ(aj)
(“lifting”) to make separation more effective. Seek (x , β) such that

ψ(aj)
T x − β ≥ 1 when yj = +1;

ψ(aj)
T x − β ≤ −1 when yj = −1.

Leads to the formulation:

min
x

1

m

m∑
j=1

max(1− yj(ψ(aj)
T x − β), 0) +

1

2
λ‖x‖2

2.

Can avoid defining ψ explicitly by using instead the dual of this QP.
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Nonlinear SVM: Dual

Dual is a quadratic program in m variables, with simple constraints:

min
α∈Rm

1

2
αTQα− eTα s.t. 0 ≤ α ≤ (1/λ)e, yTα = 0.

where Qk` = yky`ψ(ak)Tψ(a`), y = (y1, y2, . . . , ym)T , e = (1, 1, . . . , 1)T .

No need to choose ψ(·) explicitly. Instead choose a kernel K , such that

K (ak , a`) ∼ ψ(ak)Tψ(a`).

[Boser et al., 1992, Cortes and Vapnik, 1995]. “Kernel trick.”

Gaussian kernels are popular:

K (ak , a`) = exp(−‖ak − a`‖2/(2σ)), for some σ > 0.
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Nonlinear SVM
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Application X: Logistic Regression

Binary logistic regression is similar to binary SVM, except that we seek a
function p that gives odds of data vector a being in class 1 or class −1,
rather than making a simple prediction.

Seek odds function p parametrized by x ∈ Rn:

p(a; x) := (1 + ea
T x)−1.

Choose x so that p(aj ; x) ≈ 1 when yj = 1 and p(aj ; x) ≈ 0 when yj = −1.

Choose x to minimize a negative log likelihood function:

L(x) = − 1

m

 ∑
yj=−1

log(1− p(aj ; x)) +
∑
yj=1

log p(aj ; x)


Sparse solutions x are interesting because the indicate which components
of aj are critical to classification. Can solve: minz L(z) + λ‖z‖1.
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Multiclass Logistic Regression

Have M classes instead of just 2. M can be large e.g. identify phonemes
in speech, identify line outages in a power grid.

Labels yj` = 1 if data point j is in class `; yj` = 0 otherwise; ` = 1, . . . ,M.

Find subvectors x[`], ` = 1, 2, . . . ,M such that if aj is in class k we have

aTj x[k] � aTj x[`] for all ` 6= k .

Find x[`], ` = 1, 2, . . . ,M by minimizing a negative log-likelihood function:

f (x) = − 1

m

m∑
j=1

[
M∑
`=1

yj`(aTj x[`])− log

(
M∑
`=1

exp(aTj x[`])

)]

Can use group LASSO regularization terms to select important features
from the vectors aj , by imposing a common sparsity pattern on all x[`].
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Application XI: Deep Learning

output nodes

input nodes

hidden layers

Inputs are the vectors aj , out-
puts are odds of aj belonging
to each class (as in multiclass
logistic regression).

At each layer, inputs are con-
verted to outputs by a linear
transformation composed with
an element-wise function:

a`+1 = σ(W `a` + g `),

where a` is node values at
layer `, (W `, g `) are parame-
ters in the network, σ is the
element-wise function.
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Deep Learning

The element-wise function σ makes transformations to scalar input:

Logistic function: t → 1/(1 + e−t);

Hinge: t → max(t, 0): “ReLU”;

Bernoulli: random! t → 1 with probability 1/(1 + e−t) and t → 0
otherwise (inspired by neuron behavior).

The example depicted shows a completely connected network — but more
typically networks are engineered to the application (speech processing,
object recognition, . . . ).

local aggregation of inputs: pooling;

restricted connectivity + constraints on weights (elements of W `

matrices): convolutions.

connections that skip a layer: ResNet. Each layer fits the “residual”
of the fit from the layer below.
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Training Deep Learning Networks

The network contains many parameters — (W `, g `), ` = 1, 2, . . . , L in the
notation above — that must be selected by training on the data (aj , yj),
j = 1, 2, . . . ,m. Objective has the form:

m∑
j=1

h(x ; aj , yj)

where x = (W 1, g 1,W 2, g 2, . . . ) are the parameters in the model and h
measures the mismatch between observed output yj and the outputs
produced by the model (as in multiclass logistic regression).

Number of parameters (elements in x) is often vastly greater than the
number of data points — yet “overfitting” is not necessarily a problem!

Nonlinear, Nonconvex, usually Nonsmooth.

Many software packages available for training: Caffe, PyTorch, Tensor
Flow, Theano,... Many run on GPUs.
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How Does a Neural Network Make The Problem Easier?

Can think of the neural network as transforming the raw data in a way
that makes the ultimate task (regression, classification) easier.

We consider a multiclass classification application in power systems. The
raw data is PMU measurements at different points in a power grid, under
different operating conditions. The goal is to use this data to detect line
outages. Each class corresponds to outage of a particular line.

High-dimensional. Can illustrate by doing a singular value decomposition
of the data matrix and plotting pairs of principal components on a 2-d
graph.

Do this before and after transformation. One hidden layer with 200 nodes.
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Raw Data (Before Transformation)
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After Transformation by One Layer
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Summary

Optimization provides powerful frameworks for formulating and solving
problems in data analysis and machine learning.

BUT it’s usually not enough to just formulate these problems and use
off-the-shelf optimization technology to solve them. The algorithms need
to be customized to the problem structure (in particular, large amount of
data) and the context.

Research in this area has exploded over the past decade and is still going
strong, with a great many unanswered questions. (Many of them in deep
learning.)
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