MATH7502

The abstract least squares problem

Phil Isaac

1 Vector spaces

1.1 Definition

Let V be a nonempty set on which are defined operations "+" (addition) and "·" (scalar multiplication). V is a **vector space** (over \mathbb{R}) if the following hold for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and all $k, \ell \in \mathbb{F}$:

- (V1) $\mathbf{u} + \mathbf{v} \in V$ (closure)
- (V2) u + v = v + u (additive commutativity)
- (V3) $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ (additive associativity)
- (V4) $\exists 0 \in V$ such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ (zero vector, or additive identity)
- (V5) For each $\mathbf{u} \in V$, $\exists (-\mathbf{u}) \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (additive inverse)
- (V6) $k \cdot \mathbf{u} \in V$
- (V7) $k \cdot (\mathbf{u} + \mathbf{v}) = k \cdot \mathbf{u} + k \cdot \mathbf{v}$ (multiplicative-additive distributivity)
- (V8) $(k + \ell) \cdot \mathbf{u} = k \cdot \mathbf{u} + \ell \cdot \mathbf{u}$ (additive-multiplicative distributivity)
- (V9) $k \cdot (\ell \cdot \mathbf{u}) = (k\ell) \cdot \mathbf{u}$ (multiplicative-multiplicative distributivity)
- (V10) $1 \cdot \mathbf{u} = \mathbf{u}$ (multiplicative identity)

The scalar multiplication symbol is often omitted. Elements of a vector space are usually called vectors.

1.2 Examples

- \mathbb{R}^n set of *n*-tuples
- $M_{m,n}(\mathbb{R})$ set of $m \times n$ matrices
- C[a,b] set of continuous real-valued functions on [a,b]
- $P_n(\mathbb{R})$ set of polynomials of degree at most n
- Set of solutions to a homogeneous linear ODE

2 Real inner product spaces

2.1 Dot product

The familiar dot product, $\mathbf{u} \cdot \mathbf{v}$, of the two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ is given by

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

where $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$. This is readily generalised to \mathbb{R}^n by

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + \ldots + u_n v_n$$
, where $\mathbf{u} = (u_1, \ldots, u_n), \ \mathbf{v} = (v_1, \ldots, v_n).$

This dot product has the following key properties:

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$

$$(k\mathbf{u}) \cdot \mathbf{v} = k(\mathbf{u} \cdot \mathbf{v})$$

$$\mathbf{u} \cdot \mathbf{u} \ge 0$$

$$\mathbf{u} \cdot \mathbf{u} = 0 \text{ iff } \mathbf{u} = \mathbf{0}$$

2.2 Inner product space

Inspired by the dot product on \mathbb{R}^n , we define a so-called inner product on a general real vector space by elevating the key properties of the dot product to axioms.

An inner product on V is a function that takes each ordered pair (\mathbf{u}, \mathbf{v}) of elements of V to a real number, denoted by $\langle \mathbf{u}, \mathbf{v} \rangle$, such that for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and all $k \in \mathbb{R}$:

- (I1) $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$
- (I2) $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- (I3) $\langle k\mathbf{u}, \mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle$
- (I4) $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$
- (I5) $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ iff $\mathbf{u} = \mathbf{0}$ (where $\mathbf{0}$ is the unique zero vector)

A vector space with an inner product associated to it is called an **inner product** space.

2.3 Examples

•
$$M_{m,n}(\mathbb{R})$$
: $\langle \mathbf{u}, \mathbf{v} \rangle = \operatorname{tr}(\mathbf{v}^T \mathbf{u})$

•
$$C[a,b]$$
: $\langle \mathbf{u}, \mathbf{v} \rangle = \int_a^b u(x)v(x) dx$

• $P_n(\mathbb{R})$:

$$p(x) = p_0 + p_1 x + \dots + p_n x^n$$

$$q(x) = q_0 + q_1 x + \dots + q_n x^n$$

$$\Rightarrow \langle p, q \rangle = p_0 q_0 + p_1 q_1 + \dots + p_n q_n$$

• Set of solutions to a (second order) homogeneous linear ODE: $\langle f,g\rangle=f(0)g(0)+f'(0)g'(0)$

3 Magnitude and direction

The norm (or magnitude or length) of an element $\mathbf{v} = (v_1, \dots, v_n)$ of \mathbb{R}^n is given by the familiar expression

$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + \ldots + v_n^2}.$$

There is a similar notion for any real inner product space V. The **norm** of a vector $\mathbf{v} \in V$, denoted by $||\mathbf{v}||$, is thus defined by

$$||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}.$$

A vector with norm 1 is called a unit vector.

How would we define the *distance*, $d(\mathbf{u}, \mathbf{v})$, between two vectors $\mathbf{u}, \mathbf{v} \in V$? A natural notion of distance between two vectors should be independent of the order we happen to be viewing them. That is, we want the distance measure to be symmetric: $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$. Again using \mathbb{R}^n as inspiration, we now define the **distance** between two vectors $\mathbf{u}, \mathbf{v} \in V$ as

$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||.$$

Note that the notions of norm and distance are relative to the inner product used! We may also talk about the angle between two vectors in an inner product space:

$$\theta = \cos^{-1}\left(\frac{\langle \mathbf{u}, \mathbf{v} \rangle}{||\mathbf{u}|| \, ||\mathbf{v}||}\right)$$

3.1 Orthogonality and Pythagoras

As in \mathbb{R}^n with inner product given by the usual dot product, we say that two vectors $\mathbf{u}, \mathbf{v} \in V$ are **orthogonal** if

$$\langle \mathbf{u}, \mathbf{v} \rangle = 0.$$

There is an analogue of Pythagoras' Theorem for inner product spaces:

$$||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 \iff \langle \mathbf{u}, \mathbf{v} \rangle = 0.$$

3.2 Orthogonal complement

Let U be a subset of the real inner product space V. The **orthogonal complement** of U, denoted by U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U. That is,

$$U^{\perp} = \{ \mathbf{v} \in V \mid \langle \mathbf{v}, \mathbf{u} \rangle = 0 \text{ for every } \mathbf{u} \in U \}.$$

This is a vector space with addition and scalar multiplication inherited from V.

3.3 Orthogonal set

Let V be a real inner product space. A nonempty set of vectors in V is **orthogonal** if each vector in the set is orthogonal to all the other vectors in the set. That is, the set $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}\subseteq V$ is orthogonal if

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0, \qquad i \neq j.$$

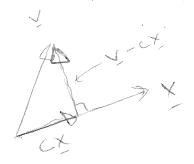
3.4 Orthonormal basis

An orthogonal set of vectors in V is called **orthonormal** if all the vectors in the set are unit vectors. That is, the set $\{e_1, \ldots, e_n\} \subset V$ is orthonormal if

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{i,j},$$

where the Kronecker delta is defined by

$$\delta_{i,j} = \left\{ egin{array}{ll} 0, & i
eq j, \ 1, & i = j. \end{array}
ight.$$

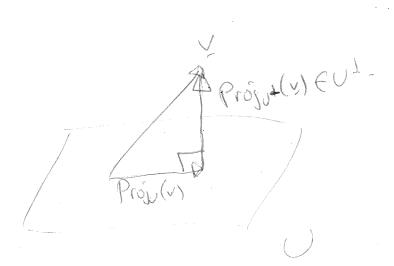


3.5 Orthogonal projection

Let U be a finite-dimensional subspace of the real inner product space V. Then, each $\mathbf{v} \in V$ can be written in a unique way as

$$\mathbf{v} = \mathbf{u} + \mathbf{w}, \quad \mathbf{u} \in U, \quad \mathbf{w} \in U^{\perp}.$$

In the proof, we will assume that U has an orthonormal basis $S = \{\mathbf{e}_1, \dots, \mathbf{e}_k\}$.



The vector $\mathbf{u} \in U$ is called the **orthogonal projection of v onto** U and is given by

$$\operatorname{Proj}_{U}(\mathbf{v}) = \langle \mathbf{v}, \mathbf{e}_{1} \rangle \mathbf{e}_{1} + \ldots + \langle \mathbf{v}, \mathbf{e}_{k} \rangle \mathbf{e}_{k}.$$

Likewise, the vector $\mathbf{w} \in U^{\perp}$ is called the **orthogonal projection of v onto** U^{\perp} and is given by

$$\operatorname{Proj}_{U^{\perp}}(\mathbf{v}) = \mathbf{v} - \operatorname{Proj}_{U}(\mathbf{v}).$$

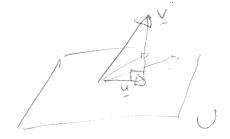
3.6 Gram-Schmidt process

Let $\beta = \{v_1, \ldots, v_n\}$ be a linearly independent set of vectors in an inner product space V. The following algorithm, called the *Gram-Schmidt process*, converts β into an orthonormal set.

Step 1: Set
$$e_1 = \frac{v_1}{||v_1||}$$

Step $i + 1$: Let $U_i = \operatorname{span}\{e_1, \dots, e_i\}$.
Set $w_{i+1} = v_{i+1} - \operatorname{Proj}_{U_i}(v_{i+1})$
 $\Rightarrow w_{i+1} \in U_i^{\perp}, \quad w_{i+1} \neq 0$.
Set $e_{i+1} = \frac{w_{i+1}}{||w_{i+1}||}$

Outcome: $\{e_1, \ldots, e_n\}$ is an orthonormal set.



4 Least squares problem - minimising distance to a subspace

A recurring problem in linear algebra, and in its myriad of applications, is the following:

• Given a vector \mathbf{v} in a real inner product space V, give the best approximation to \mathbf{v} in a finite-dimensional subspace U of V.

Question: What do we mean by "best approximation"?

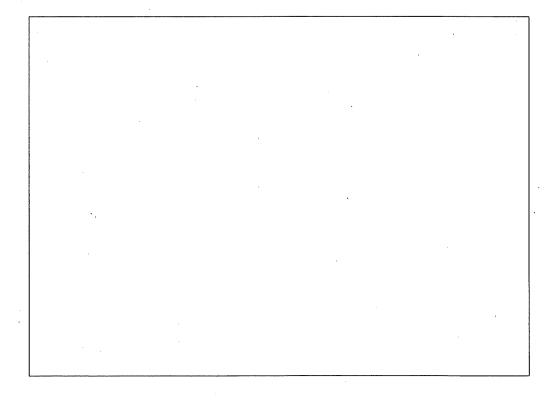
Answer: Seek $\mathbf{u} \in U$ that minimises $||\mathbf{v} - \mathbf{u}||$. Equivalently, find a vector in a subspace (for example, corresponding to a point on a plane in \mathbb{R}^3), of minimal distance to a given vector in the ambient vector space (in this example, corresponding to a point in \mathbb{R}^3). Concretely, let $\mathbf{v} \in V$. Then, the problem is to

find $\mathbf{u} \in U$ such that $d(\mathbf{u}, \mathbf{v})$ is as small as possible.

This problem is called the "least squares problem."

Theorem (Best Approximation Theorem). If U is a finite-dimensional subspace of a real inner product space V, and if $\mathbf{v} \in V$, then $\text{Proj}_U(\mathbf{v})$ is the best approximation to \mathbf{v} from U in the sense that

$$||\mathbf{v} - \operatorname{Proj}_{U}(\mathbf{v})|| < ||\mathbf{v} - \mathbf{u}|| \quad \forall \mathbf{u} \in U : \quad \mathbf{u} \neq \operatorname{Proj}_{U}(\mathbf{v}).$$



In practice, rather than work with minimising $||\mathbf{v} - \mathbf{u}||$, we minimise $||\mathbf{v} - \mathbf{u}||^2$ (same outcome, avoid square root). Then Best Approximation Theorem \implies $\operatorname{Proj}_U(\mathbf{v})$ is the best approximation

 \iff $\mathbf{u} = \operatorname{Proj}_{U}(\mathbf{v})$ is the vector that minimises $||\mathbf{v} - \mathbf{u}||^{2}$.

4.1 Examples

1. Inconsistent linear systems: Let $A \in M_{m,n}(\mathbb{R})$ and $\mathbf{b} \in M_{m,1}(\mathbb{R})$. For m > n, the linear system described by

$$A\mathbf{x} = \mathbf{b}$$

is over-determined and does not in general have a solution. We can look at the least squares solution.

Important observation: $A\mathbf{x} \in \text{Col}(A)$

In the context of the inconsistent system and least squares, we seek the closest vector to \mathbf{b} in the column space of A, then solve

Cal(A)

$$A\hat{\mathbf{x}} = \operatorname{Proj}_{\operatorname{Col}(A)}(\mathbf{b}).$$

We could use Gram-Schmidt and the orthogonal projection explicitly, but a more efficient approach for this case is to solve the *normal equation*

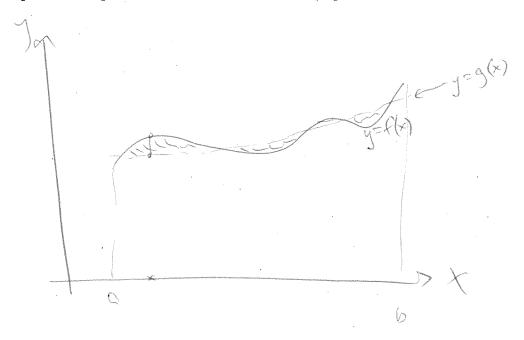
$$A^T A \hat{x} = A^T \mathbf{b} \Rightarrow \hat{x} = (A^T A)^{-1} A^T \mathbf{b}.$$

Such equations arise in polynomial fitting to data.

2. Least squares function approximation

Given a function $f \in C[a, b]$, find the best approximation to f using only functions from a specified subspace U of C[a, b].

Interpret "best possible" in the sense of least squares.



Consider g as an approximation to f.

At point x_0 the error is $|f(x_0) - g(x_0)|$. For the entire interval, define error as $\int_a^b |f(x) - g(x)| dx$.

This is area between curves.

An easier definition (and one more amenable to calculations) is the *mean squared* error (MSE)

$$MSE = \int_{a}^{b} (f(x) - g(x))^{2} dx.$$

Recall the integral inner product on C[a, b];

$$\langle \mathbf{p}, \mathbf{q} \rangle = \int_a^b p(x) q(x) \ dx$$

$$\implies$$
 MSE = $||\mathbf{f} - \mathbf{g}||^2 = \langle \mathbf{f} - \mathbf{g}, \mathbf{f} - \mathbf{g} \rangle = \int_a^b (f(x) - g(x))^2 dx$.

e.g. $\sin(x)$

Find the least squares approximation for $\sin x$ in the subspace of $C[0, \pi]$ spanned by $\{1, x, x^2\}$. Use the inner product

$$\langle \mathbf{p}, \mathbf{q} \rangle = \int_0^\pi p(x) q(x) \ dx.$$

Solution is

$$y = \frac{12(\pi^2 - 10)}{\pi^3} + \frac{60(12 - \pi^2)}{\pi^4}x + \frac{60(\pi^2 - 12)}{\pi^5}x^2.$$

e.g. Fourier coefficients In $C[0, 2\pi]$, the set

$$\beta_n = \left\{ \frac{1}{\sqrt{2\pi}} \right\} \cup \left\{ \frac{1}{\sqrt{\pi}} \cos kx \, | \, k = 1, \dots, n \right\} \cup \left\{ \frac{1}{\sqrt{\pi}} \sin kx \, | \, k = 1, \dots, n \right\},$$

where $n \in \mathbb{N}_0$, is orthonormal with respect to the inner product

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_0^{2\pi} f(x)g(x)dx.$$

It follows that β_n is an orthonormal basis for the (2n+1)-dimensional subspace $W_n = \operatorname{span}(\beta_n)$ of $C[0,2\pi]$. The orthogonal projection of $\mathbf{f} \in C[0,2\pi]$ onto W_n is given by $\operatorname{Proj}_{W_n}(\mathbf{f})$. In the limit $n \to \infty$, the corresponding approximation of f(x) yields the **Fourier series** of f(x) over the interval $[0,2\pi]$:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right),$$

where

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos kx \, dx, \qquad b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin kx \, dx,$$

are the associated Fourier coefficients.

