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1 Vector spaces

1.1 Definition

Let V' be a nonempty set on which are defined operations “+” (addition) and “” (scalar
multiplication). V' is a vector space (over R) if the following hold for all u,v,w € V
and all k,£ € TF;

(V1) u+veV (closure)

(V2) u+v=v+u (additive commutativity)

(V3) u+(v+w)=(u+v)+w (additive associativity)

(V4) 30€V suchthatu+0=u (zefo vector, or additive identity)

(V5) Foreach ue V,3(~u) € V such that u+ (—u) =0 (additive inverse)
(V6) k-ueV

(V7) k-(u+v)=k-u+k v (multiplicative-additive distributivity)

(V8) (k+£) - u=k-u+{ -u (additivemultiplicative distributivity)

(V9) k- (¢-u)=(kf) u (multiplicative-multiplicative distributivity)

(V10) 1:u=u (multiplicative identity)

The scalar multiplication symbol is often omitted. Elements of a vector space are
usually called vectors.



1.2 Examples

¢ R” — get of n-tuples

o M, .(R) - set of m x n matrices

Cla, b] — set of continuous real-valued functions on [a, b]

o P,(R) — set of polynomials of degree at most n

Set of solutions to a homogeneous linear ODE



2 Real inner product spaces

2.1 Dot product

The familiar dot product, u - v, of the two vectors u,v € R? is given by
u- v =1uvy + gty + ugvs,
where u = (u1, up, u3) and v = (v, v, v3). This is readily generalised to R™ by
u-v=uv;+...+uv,, where u=(uy,...,up), v=_(v1,...,0,).

This dot product has the following key properties:
u-v=v-u

(u+v) w=u-w+v.w

(ku) - v=4k(u v)

u-u>0

uu=0ifu=0

2.2 Inner product space

Inspired by the dot product on R", we define a so-called inner product on a general
real vector space by elevating the key properties of the dot product to axioms.

An inner product on V is a function that takes each ordered pair (u, v) of elements
of V to a real number, denoted by (u, v), such that for all u,v,w € V and all k € R:

M) (u,v) = (v,u)
(12) (u+4v,w)=(u,w)+(v,w)

(I3) (ku,v) = k(u,v)

(I4) (w,u) >0

(I5) (u,u) =0iff u=0 (where 0 is the unique zero vector)

A vector space with an inner product associated to it is called an inner product
space.



2.3 Examples
o My n(R): (u,v) = tr(vTu)

e Cla,b]: (u,v)= fabu(a:)v(w) dx

T

p(z) =po+pmz+ -+
gz)=qo+ @z + -+ guz"

= (D, q) = Podo + P1g1 + * * * + Pnn

o Set of solutions to a (second order) homogeneous linear ODE:

(f,9) = f(0)g(0) + f'(0)g'(0)



3 Magnitude and direction

The norm (or magnitude or length) of an element v = (vy,...,v,) of R" is given by

the familiar expression
v = Vv -v=4/vi+. . + 02

There is a similar notion for any real inner product space V. The norm of a vector
v € V, denoted by ||v||, is thus defined by

VIl = v/ (v, v).

A vector with norm 1 is called a unit vector.

How would we define the distance, d(u,v), between two vectors u,v € V? A
natural notion of distance between two vectors should be independent of the order we
happen to be viewing them. That is, we want the distance measure to be symmetric:
d(u,v) = d(v,u). Again using R™ as inspiration, we now define the distance between
two vectors u,v € V as

d(u,v) = [ju =v]]

Note that the notions of norm and distance are relative to the inner product used!
We may also talk about the angle between two vectors in an inner product space:

6 = cos™ <|_|§|1ﬂ|Y‘>’—”>

3.1 Orthogonality and Pythagoras

As in R™ with inner product given by the usual dot product, we say that two vectors
u,v € V are orthogonal if ‘
{(u,v) =0.

There is an analogue of Pythagoras’ Theorem for inner product spaces:

v =P+ VP = (wv) =0



3.2 Orthogonal complement

Let U be a subset of the real inner product space V. The orthogonal complement
of U, denoted by U+, is the set of all vectors in V that are orthogonal to every vector
in U. That is,

Ut ={veV|({v,u) =0 for every u € U}.

This is a vector space with addition and scalar multiplication inherited from V.

3.3 Orthogonal set

Let V be a real inner product space. A nonémpty set of vectors in V is orthogonal if
each vector in the set is orthogonal to all the other vectors in the set. That is, the set
{v1,...,vn} CV is orthogonal if

(Vi)vj> :Oa 27&]

3.4 Orthonormal basis

An orthogonal set of vectors in V is called orthonormal if all the vectors in the set
are unit vectors. That is, the set {ei,...,e,} C V is orthonormal if

(ei, €5) = dij,
where the Kronecker delta is defined by

0, 1#7,
0ij = ’
1, =g



3.5 Orthogonal projection

Let U be a finite-dimensional subspace of the real inner product space V. Then, each
v € V can be written in a unique way as

v=u+w, uelU, weUt

In the proof, we will assume that U has an orthonormal basis S = {e;,...,e}.

The vector u € U is called the orthogonal projection of v onto U and is given
by ' '
Projy(v) =(v,e1)er + ...+ (v, ep)es.
Likewise, the vector w € U+ is called the orthogonal projection of v onto U and
is given by
Projy.(v) = v — Projy(v).



3.6 Gram-Schmidt process

Let B = {v1,...,v,} be a linearly independent set of vectors in an inner product
space V. The following algorithm, called the Gram-Schmidt process, converts § into
an orthonormal set.

Step 1: Set ey = Hzill
Step i + 1: Let U; = span{ey,...,e;}.
Set wiy1 = vip1 — Projy, (viy1)
= Wiy € U, wig1 #0.

X _ _Wip
Set ei1 = [l

Outcome: {ey,...,e,} is an orthonormal set.
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4 Least squares problem - minimising distance to a
subspace

A recurring problem in linear algebra, and in its myriad of applications, is the following:

e Given a vector v in a real inner product space V, give the best approximation to
v in a finite-dimensional subspace U of V.

Question: What do we mean by “best approximation”?

Answer: Seek u € U that minimises ||v — u||. Equivalently, find a vector in a subspace

(for example, corresponding to a point on a plane in R?®), of minimal distance to a

glven vector in the ambient vector space (in this example, corresponding to a pomt in
R3). Concretely, let v € V. Then, the problem is to

find u € U such that d(u,v) is as small as possible.

This problem is called the “least squares problem.”

Theorem (Best Approximation Theorem). If U is a finite-dimensional subspace of a
real inner product space V, and if v € V, then Proj;(v) is the best approximation to
v from U in the sense that

[lv — Projy(W)]| < ||[v—u|| YueU : wusProj,(v).
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In practice, rather than work with minimising ||v —u]|, we minimise ||v—ul|? (same
outcome, avoid square root). Then Best Approximation Theorem = Proj;(v) is
the best approximation

<= u = Projy(v) is the vector that minimises ||v — ul|?.

4.1 Examples

1. Inconsistent linear systems: Let A € M, ,(R) and b € M, 1(R).
For m > n, the linear system described by

Ax=Db

is over-determined and does not in general have a solution. We can look at the least
squares solution. §

Important observation: Ax € Col(A)

In the context of the inconsistent system and least squares, we seek the closest
vector to b in the column space of A, then solve

A% = Projcei4)(b)-

We could use Gram-Schmidt and the orthogonal projection explicitly, but a more effi-
cient approach for this case is to solve the normal equation

ATAz = A"b = &= (ATA)ATb,

Such equations arise in polynomial fitting to data.
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2. Least squares function approximation
Given a function f € Cla,b], find the best approximation to f using only functions
from a specified subspace U of C|a, b].

Interpret “best possible” in the sense of least squares.

o
i,

B

MWWVM

Consider g as an approximation to f.

At point zg the error is |f(zo) — g(zo)|. For the entire interval, define error as
b
Jo 1f (@) = g(z)|dz.

This is area between curves.

An easier definition (and one more amenable to calculations) is the mean squared
error (MSE)

b |
MSE = [ (f(o) - 9(o)" da.

Recall the integral inner product on Cla, b;

b
(b, @) = / p(e)a(z) du

b
— MSE = [f gl = (-5 - 8) = [ ()~ 9(a)" do
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e.g. sin(z)
Find the least squares approximation for sinz in the subspace of C[0, 7] spanned
by {1,z,z?}. Use the inner product

(p,q) = /07r p(z)q(z) d.

Solution is

12(m% — 10 60(12 — 72 60(w? — 12
y = 12010 6002 r) 60 ~12)
a ‘ i T

e.g. Fourier coefficients
In C|0, 27], the set

Bn = {ﬁ} U{\—/l—;coskﬂk:l,...,n} U{ﬁsiﬁk:c“c: 1,...,n},
where n € Ny, is orthonormal with respect to the inner product

2

(f,g) = A f(z)g(z)dz.

It follows that 8, is an orthonormal basis for the (2n + 1)-dimensional subspace
W,, = span(f,) of C|0, 27]. The orthogonal projection of f € C[0, 27] onto W, is given
by Projy. (f). In the limit n — oo, the corresponding approximation of f(z) yields the
Fourier series of f(z) over the interval [0, 27]: ‘

f(z) = 929 + > (ax coska + by sin ka),
. k=1

where
1 2w 1 2m
ap = — f(z) cos kz dz, b = — (z) sin kz dz,
T Jo T Jo

are the associated Fourier coefficients.
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