
MATH7502 Assignment 2 Semester 2, 2019 Due 14/9/2019

1. Suppose that a1, . . . , ak are orthonormal n-vectors and β1, . . . , βk are scalars.
Assume x =

∑k
i=1 βiai. Express ||x|| in terms of β = (β1, . . . , βk).

2. Consider the list of n n-vectors, a1, . . . , an with,

ak =
k∑

i=1

ei, k = 1, . . . , n.

(a) Describe what happens when you run the Gram-Schmidt algorithm on this list of
vectors. I.e., determine what q1, . . . , qn are.

(b) Is a1, . . . , an a basis for Rn?

(c) Implement the Gram-Schmidt algorithm in Julia. Run your code on a1, . . . , an for
n = 10 and n = 100. Does the output differ if you use a different order for a1, . . . , an?
That is, if you run the algorithm on a non-trivial permutation of a1, . . . , an, do you
get a different result? Explain.

3. Let A and B be two m × n matrices. Under each of the assumptions below, determine
whether A = B must always hold, or whether A = B holds only sometimes. Explain/prove
your answer.

(a) Suppose Ax = Bx holds for all n-vectors x.

(b) Suppose Ax = Bx for some nonzero n-vector x.

4. Take any matrix A ∈ Rm×n. Show that ATA has the same null space as A.

5. An n× n matrix A is called skew-symmetric if AT = −A.

(a) Find all 2× 2 skew-symmetric matrices.

(b) Explain why the diagonal entries of a skew-symmetric matrix must be zero.

(c) Show that for a skew-symmetric matrix A, and any n-vector x, (Ax) ⊥ x. This means
that Ax and x are orthogonal.

(d) Now suppose A is a matrix for which (Ax) ⊥ x for any n-vector x. Show that A must
be skew-symmetric.

(e) Create a Julia function that creates a random skew-symmetric matrix of order n. Use
it to empirically check that (Ax) ⊥ x by generating 10, 000 random matrices of order
n = 5 and 10, 000 random vectors.

6. For this problem we consider several linear functions of a monochrome image with N ×N
pixels. We represent the image as a N2-vector with ordering based on columns of the image
(column-major). Each of the operations or transformations below defines a function y =
f(x) where the N2-vector x represents the original image, and the N2-vector y represents
the resulting transformed image. For each of these operations, define the N2×N2 matrix
A such that f(x) = Ax. Try it in Julia on the image image = [(i+j)^2 for i in 1:10,

j in 1:10]. Present your results via heatmap( ,yflip = true).

(a) Turn the original image upside-down.

(b) Rotate the original image clockwise 90◦.

(c) Translate the image up by 2 pixels and to the right by 2 pixels. In the translated
image, assign the value 0 to the pixels in the first 2 columns and last 2 rows.

(d) Set each pixel value to be the average of the neighbours of the pixel in the original
image (there are several alternative meanings to “neighbours” - choose one meaning
and explain the meaning that you use).
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7. Consider a function f : [−1, 1] → R. We are interested in estimating the definite integral
α =

∫ 1
−1 f(x) dx based on the value of f at some points t1, . . . , tn. The standard method

for estimating α is to form a weighted sum of the values f(ti):

α̂ = w1f(t1) + . . .+ wnf(tn).

Here the estimate α̂ approximates α. This method is called quadrature. There are many
quadrature methods (i.e. choices of points ti and weights wi).

(a) A typical requirement of the quadrature is that the approximation be exact (i.e.
α̂ = α) when f is any polynomial up to degree d, where d is given. In this case we
say that the quadrature method has order d. Express this condition as a set of linear
equations on the weights Aw = b, assuming the points t1, . . . , tn are given.

(b) Show that the following quadrature methods have order 1, 2 and 3 respectively:
(i) Trapezoid rule: n = 2, t1 = −1, t2 = 1, w1 = w2 = 1/2.
(ii) Simpson’s rule: n = 3, t1 = −1, t2 = 0, t3 = 1, w1 = 1/3, w2 = 4/3, w3 = 1/3.
(iii) Simpson’s 3/8 rule: n = 4, t1 = −1, t2 = −1/3, t3 = 1/3, t4 = 1, w1 = 1/4,
w2 = 3/4, w3 = 3/4, w4 = 1/4.

(c) Implement these for the function f(x) = sin(x)/x and compare their performance to
the actual value of α.

(d) Use your answer to (a) to find a rule of a higher order that outperforms the rules
above for f(x) = sin(x)/x. You choose the ti values as you wish. Demonstrate your
method outperforms the other rules.

8. Let a and b be n-vectors. The inner product is symmetric, i.e. aT b = bTa. The outer
product of the two vectors is generally not symmetric. What are the conditions on a and
b under which abT = baT ? You can assume that all the entries of a and b are nonzero.
The conclusion you come to will hold even when some entries of a and b are zero.

9. The sum of the diagonal entries of a square matrix is called the trace and denoted by tr(A).

(a) Suppose A and B are m× n matrices. Show that,

tr(ATB) =
m∑
i=1

n∑
j=1

AijBij .

(b) The number tr(ATB) is sometimes referred to as the inner product of the matrices
A and B. Show that tr(ATB) = tr(BTA).

(c) Show that tr(ATA) = ||A||2.
(d) Show that tr(ATB) = tr(BAT ), even though in general ATB and BAT can have

different dimensions, and even when they have the same dimensions, they need not
be equal.

10. Suppose the n× k matrix A has QR factorization A = QR. We define the n× i matrices,

Ai = [a1 · · · ai], Qi = [q1 · · · qi],

for i = 1, . . . , k. Define the i × i matrix Ri as the sub matrix of R containing its first i
rows and columns, for i = 1, . . . , k. Using index range notation, we have,

Ai = A1:n,1:i, Qi = A1:n,1:i, Ri = R1:i,1:i.

Show (prove) that Ai = QiRi is the QR factorization of Ai. This means that when you
compute the QR factorization of A, you are also computing the QR factorization of all
sub matrices A1, . . . , Ak. Demonstrate this in Julia on example matrices for n = 5.

2 of 2


