1. Suppose that a_{1}, \ldots, a_{k} are orthonormal n-vectors and $\beta_{1}, \ldots, \beta_{k}$ are scalars. Assume $x=\sum_{i=1}^{k} \beta_{i} a_{i}$. Express $\|x\|$ in terms of $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)$.
2. Consider the list of $n n$-vectors, a_{1}, \ldots, a_{n} with,

$$
a_{k}=\sum_{i=1}^{k} e_{i}, \quad k=1, \ldots, n
$$

(a) Describe what happens when you run the Gram-Schmidt algorithm on this list of vectors. I.e., determine what q_{1}, \ldots, q_{n} are.
(b) Is a_{1}, \ldots, a_{n} a basis for \mathbb{R}^{n} ?
(c) Implement the Gram-Schmidt algorithm in Julia. Run your code on a_{1}, \ldots, a_{n} for $n=10$ and $n=100$. Does the output differ if you use a different order for a_{1}, \ldots, a_{n} ? That is, if you run the algorithm on a non-trivial permutation of a_{1}, \ldots, a_{n}, do you get a different result? Explain.
3. Let A and B be two $m \times n$ matrices. Under each of the assumptions below, determine whether $A=B$ must always hold, or whether $A=B$ holds only sometimes. Explain/prove your answer.
(a) Suppose $A x=B x$ holds for all n-vectors x.
(b) Suppose $A x=B x$ for some nonzero n-vector x.
4. Take any matrix $A \in \mathbb{R}^{m \times n}$. Show that $A^{T} A$ has the same null space as A.
5. An $n \times n$ matrix A is called skew-symmetric if $A^{T}=-A$.
(a) Find all 2×2 skew-symmetric matrices.
(b) Explain why the diagonal entries of a skew-symmetric matrix must be zero.
(c) Show that for a skew-symmetric matrix A, and any n-vector $x,(A x) \perp x$. This means that $A x$ and x are orthogonal.
(d) Now suppose A is a matrix for which $(A x) \perp x$ for any n-vector x. Show that A must be skew-symmetric.
(e) Create a Julia function that creates a random skew-symmetric matrix of order n. Use it to empirically check that $(A x) \perp x$ by generating 10,000 random matrices of order $n=5$ and 10,000 random vectors.
6. For this problem we consider several linear functions of a monochrome image with $N \times N$ pixels. We represent the image as a N^{2}-vector with ordering based on columns of the image (column-major). Each of the operations or transformations below defines a function $y=$ $f(x)$ where the N^{2}-vector x represents the original image, and the N^{2}-vector y represents the resulting transformed image. For each of these operations, define the $N^{2} \times N^{2}$ matrix A such that $f(x)=A x$. Try it in Julia on the image image $=\left[(i+j)^{\wedge} 2\right.$ for i in 1:10, j in 1:10]. Present your results via heatmap (yflip = true).
(a) Turn the original image upside-down.
(b) Rotate the original image clockwise 90°.
(c) Translate the image up by 2 pixels and to the right by 2 pixels. In the translated image, assign the value 0 to the pixels in the first 2 columns and last 2 rows.
(d) Set each pixel value to be the average of the neighbours of the pixel in the original image (there are several alternative meanings to "neighbours" - choose one meaning and explain the meaning that you use).
7. Consider a function $f:[-1,1] \rightarrow \mathbb{R}$. We are interested in estimating the definite integral $\alpha=\int_{-1}^{1} f(x) d x$ based on the value of f at some points t_{1}, \ldots, t_{n}. The standard method for estimating α is to form a weighted sum of the values $f\left(t_{i}\right)$:

$$
\hat{\alpha}=w_{1} f\left(t_{1}\right)+\ldots+w_{n} f\left(t_{n}\right) .
$$

Here the estimate $\hat{\alpha}$ approximates α. This method is called quadrature. There are many quadrature methods (i.e. choices of points t_{i} and weights w_{i}).
(a) A typical requirement of the quadrature is that the approximation be exact (i.e. $\hat{\alpha}=\alpha$) when f is any polynomial up to degree d, where d is given. In this case we say that the quadrature method has order d. Express this condition as a set of linear equations on the weights $A w=b$, assuming the points t_{1}, \ldots, t_{n} are given.
(b) Show that the following quadrature methods have order 1,2 and 3 respectively:
(i) Trapezoid rule: $n=2, t_{1}=-1, t_{2}=1, w_{1}=w_{2}=1 / 2$.
(ii) Simpson's rule: $n=3, t_{1}=-1, t_{2}=0, t_{3}=1, w_{1}=1 / 3, w_{2}=4 / 3, w_{3}=1 / 3$.
(iii) Simpson's $3 / 8$ rule: $n=4, t_{1}=-1, t_{2}=-1 / 3, t_{3}=1 / 3, t_{4}=1, w_{1}=1 / 4$, $w_{2}=3 / 4, w_{3}=3 / 4, w_{4}=1 / 4$.
(c) Implement these for the function $f(x)=\sin (x) / x$ and compare their performance to the actual value of α.
(d) Use your answer to (a) to find a rule of a higher order that outperforms the rules above for $f(x)=\sin (x) / x$. You choose the t_{i} values as you wish. Demonstrate your method outperforms the other rules.
8. Let a and b be n-vectors. The inner product is symmetric, i.e. $a^{T} b=b^{T} a$. The outer product of the two vectors is generally not symmetric. What are the conditions on a and b under which $a b^{T}=b a^{T}$? You can assume that all the entries of a and b are nonzero. The conclusion you come to will hold even when some entries of a and b are zero.
9. The sum of the diagonal entries of a square matrix is called the trace and denoted by $\operatorname{tr}(A)$.
(a) Suppose A and B are $m \times n$ matrices. Show that,

$$
\operatorname{tr}\left(A^{T} B\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} B_{i j} .
$$

(b) The number $\operatorname{tr}\left(A^{T} B\right)$ is sometimes referred to as the inner product of the matrices A and B. Show that $\operatorname{tr}\left(A^{T} B\right)=\operatorname{tr}\left(B^{T} A\right)$.
(c) Show that $\operatorname{tr}\left(A^{T} A\right)=\|A\|^{2}$.
(d) Show that $\operatorname{tr}\left(A^{T} B\right)=\operatorname{tr}\left(B A^{T}\right)$, even though in general $A^{T} B$ and $B A^{T}$ can have different dimensions, and even when they have the same dimensions, they need not be equal.
10. Suppose the $n \times k$ matrix A has QR factorization $A=Q R$. We define the $n \times i$ matrices,

$$
A_{i}=\left[a_{1} \cdots a_{i}\right], \quad Q_{i}=\left[q_{1} \cdots q_{i}\right],
$$

for $i=1, \ldots, k$. Define the $i \times i$ matrix R_{i} as the sub matrix of R containing its first i rows and columns, for $i=1, \ldots, k$. Using index range notation, we have,

$$
A_{i}=A_{1: n, 1: i}, \quad Q_{i}=A_{1: n, 1: i}, \quad R_{i}=R_{1: i, 1: i} .
$$

Show (prove) that $A_{i}=Q_{i} R_{i}$ is the QR factorization of A_{i}. This means that when you compute the QR factorization of A, you are also computing the QR factorization of all sub matrices A_{1}, \ldots, A_{k}. Demonstrate this in Julia on example matrices for $n=5$.

