1. Suppose that \(a_1, \ldots, a_k\) are orthonormal \(n\)-vectors and \(\beta_1, \ldots, \beta_k\) are scalars. Assume \(x = \sum_{i=1}^k \beta_i a_i\). Express \(\|x\|\) in terms of \(\beta = (\beta_1, \ldots, \beta_k)\).

2. Consider the list of \(n\) \(n\)-vectors, \(a_1, \ldots, a_n\) with,

\[a_k = \sum_{i=1}^k e_i, \quad k = 1, \ldots, n. \]

(a) Describe what happens when you run the Gram-Schmidt algorithm on this list of vectors. I.e., determine what \(q_1, \ldots, q_n\) are.

(b) Is \(a_1, \ldots, a_n\) a basis for \(\mathbb{R}^n\)?

(c) Implement the Gram-Schmidt algorithm in Julia. Run your code on \(a_1, \ldots, a_n\) for \(n = 10\) and \(n = 100\). Does the output differ if you use a different order for \(a_1, \ldots, a_n\)? That is, if you run the algorithm on a non-trivial permutation of \(a_1, \ldots, a_n\), do you get a different result? Explain.

3. Let \(A\) and \(B\) be two \(m \times n\) matrices. Under each of the assumptions below, determine whether \(A = B\) must always hold, or whether \(A = B\) holds only sometimes. Explain/prove your answer.

(a) Suppose \(Ax = Bx\) holds for all \(n\)-vectors \(x\).

(b) Suppose \(Ax = Bx\) for some nonzero \(n\)-vector \(x\).

4. Take any matrix \(A \in \mathbb{R}^{m \times n}\). Show that \(A^T A\) has the same null space as \(A\).

5. An \(n \times n\) matrix \(A\) is called skew-symmetric if \(A^T = -A\).

(a) Find all \(2 \times 2\) skew-symmetric matrices.

(b) Explain why the diagonal entries of a skew-symmetric matrix must be zero.

(c) Show that for a skew-symmetric matrix \(A\), and any \(n\)-vector \(x\), \((Ax) \perp x\). This means that \(Ax\) and \(x\) are orthogonal.

(d) Now suppose \(A\) is a matrix for which \((Ax) \perp x\) for any \(n\)-vector \(x\). Show that \(A\) must be skew-symmetric.

(e) Create a Julia function that creates a random skew-symmetric matrix of order \(n\). Use it to empirically check that \((Ax) \perp x\) by generating 10,000 random matrices of order \(n = 5\) and 10,000 random vectors.

6. For this problem we consider several linear functions of a monochrome image with \(N \times N\) pixels. We represent the image as a \(N^2\)-vector with ordering based on columns of the image (column-major). Each of the operations or transformations below defines a function \(y = f(x)\) where the \(N^2\)-vector \(x\) represents the original image, and the \(N^2\)-vector \(y\) represents the resulting transformed image. For each of these operations, define the \(N^2 \times N^2\) matrix \(A\) such that \(f(x) = Ax\). Try it in Julia on the image \(\text{image} = [(i+j)^2 \text{ for } i \text{ in } 1:10, j \text{ in } 1:10]\). Present your results via \text{heatmap(,yflip = true)}.

(a) Turn the original image upside-down.

(b) Rotate the original image clockwise 90°.

(c) Translate the image up by 2 pixels and to the right by 2 pixels. In the translated image, assign the value 0 to the pixels in the first 2 columns and last 2 rows.

(d) Set each pixel value to be the average of the neighbours of the pixel in the original image (there are several alternative meanings to “neighbours” - choose one meaning and explain the meaning that you use).
7. Consider a function \(f : [-1, 1] \to \mathbb{R} \). We are interested in estimating the definite integral
\[\alpha = \int_{-1}^{1} f(x) \, dx \] based on the value of \(f \) at some points \(t_1, \ldots, t_n \). The standard method for estimating \(\alpha \) is to form a weighted sum of the values \(f(t_i) \):
\[\hat{\alpha} = w_1 f(t_1) + \ldots + w_n f(t_n). \]
Here the estimate \(\hat{\alpha} \) approximates \(\alpha \). This method is called quadrature. There are many quadrature methods (i.e. choices of points \(t_i \) and weights \(w_i \)).

(a) A typical requirement of the quadrature is that the approximation be exact (i.e. \(\hat{\alpha} = \alpha \)) when \(f \) is any polynomial up to degree \(d \), where \(d \) is given. In this case we say that the quadrature method has order \(d \). Express this condition as a set of linear equations on the weights \(Aw = b \), assuming the points \(t_1, \ldots, t_n \) are given.

(b) Show that the following quadrature methods have order 1, 2 and 3 respectively:
 (i) Trapezoid rule: \(n = 2 \), \(t_1 = -1 \), \(t_2 = 1 \), \(w_1 = w_2 = 1/2 \).
 (ii) Simpson’s rule: \(n = 3 \), \(t_1 = -1 \), \(t_2 = 0 \), \(t_3 = 1 \), \(w_1 = 1/3 \), \(w_2 = 4/3 \), \(w_3 = 1/3 \).
 (iii) Simpson’s 3/8 rule: \(n = 4 \), \(t_1 = -1 \), \(t_2 = -1/3 \), \(t_3 = 1/3 \), \(t_4 = 1 \), \(w_1 = 1/4 \), \(w_2 = 3/4 \), \(w_3 = 3/4 \), \(w_4 = 1/4 \).

(c) Implement these for the function \(f(x) = \sin(x)/x \) and compare their performance to the actual value of \(\alpha \).

(d) Use your answer to (a) to find a rule of a higher order that outperforms the rules above for \(f(x) = \sin(x)/x \). You choose the \(t_i \) values as you wish. Demonstrate your method outperforms the other rules.

8. Let \(a \) and \(b \) be \(n \)-vectors. The inner product is symmetric, i.e. \(a^T b = b^T a \). The outer product of the two vectors is generally not symmetric. What are the conditions on \(a \) and \(b \) under which \(ab^T = ba^T \)? You can assume that all the entries of \(a \) and \(b \) are nonzero. The conclusion you come to will hold even when some entries of \(a \) and \(b \) are zero.

9. The sum of the diagonal entries of a square matrix is called the trace and denoted by \(\text{tr}(A) \).

(a) Suppose \(A \) and \(B \) are \(m \times n \) matrices. Show that,
\[\text{tr}(A^T B) = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} B_{ij}. \]

(b) The number \(\text{tr}(A^T B) \) is sometimes referred to as the inner product of the matrices \(A \) and \(B \). Show that \(\text{tr}(A^T B) = \text{tr}(B^T A) \).

(c) Show that \(\text{tr}(A^T A) = ||A||^2 \).

(d) Show that \(\text{tr}(A^T B) = \text{tr}(B A^T) \), even though in general \(A^T B \) and \(B A^T \) can have different dimensions, and even when they have the same dimensions, they need not be equal.

10. Suppose the \(n \times k \) matrix \(A \) has QR factorization \(A = QR \). We define the \(n \times i \) matrices,
\[A_i = [a_1 \cdots a_i], \quad Q_i = [q_1 \cdots q_i], \]
for \(i = 1, \ldots, k \). Define the \(i \times i \) matrix \(R_i \) as the sub matrix of \(R \) containing its first \(i \) rows and columns, for \(i = 1, \ldots, k \). Using index range notation, we have,
\[A_i = A_{1:i,n,1:i}, \quad Q_i = A_{1:i,n,1:i}, \quad R_i = R_{1:i,1:i}. \]
Show (prove) that \(A_i = Q_i R_i \) is the QR factorization of \(A_i \). This means that when you compute the QR factorization of \(A \), you are also computing the QR factorization of all sub matrices \(A_1, \ldots, A_k \). Demonstrate this in Julia on example matrices for \(n = 5 \).