This exam paper must not be removed from the venue

Venue
Seat Number
Student Number \mid ___ \mid ___ \mid
Family Name
First Name
\qquad
\qquad
\qquad
\qquad

School of Mathematics \& Physics
 EXAMINATION

Semester Two Final Examinations, 2019

MATH7502 Mathematics for Data Science 2

This paper is for St Lucia Campus students.
Examination Duration:
Reading Time:

Exam Conditions:

This is a Central Examination
This is a Closed Book Examination - specified materials permitted
During reading time - write only on the rough paper provided
This examination paper will be released to the Library

Materials Permitted In The Exam Venue:

(No electronic aids are permitted e.g. laptops, phones)
Calculators - Any calculator permitted - unrestricted
One A4 sheet of handwritten or typed notes double sided is permitted

Materials To Be Supplied To Students:

None
Instructions To Students:
Additional exam materials (eg. answer booklets, rough paper) will be provided upon request.

Instructions:

There are 5 questions, with 20 points each. Each question has two items. Item (a) worth 14 points and item (b) worth 6 points.

Answer all questions on this exam paper.
Use the other side of the paper if additional space is required.

Question 1

(a) You may use the singular value decomposition (SVD) to answer this question. Consider a 1000×50 data matrix A, summarizing data of 1000 individuals and 50 features with $\operatorname{rank}(A)=$ 49. Denote the eigenvalues of $A A^{T}$ by $\lambda_{1}, \lambda_{2}, \ldots$ with $\lambda_{i} \geq \lambda_{j}$ for $j>i$. What is λ_{50} ? Explain your answer.
(b) Assume now that $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{49}=4$. Determine,

$$
\sqrt{\sum_{i=1}^{1000} \sum_{j=1}^{50} A_{i j}^{2}}
$$

Question 2

(a) Assume you are presented with pairs of data points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ where $x_{i} \neq x_{j}$ for $i \neq j$. To describe this data, you wish to fit a model,

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

by selecting $\beta=\left[\beta_{0}, \beta_{1}, \beta_{2}\right]^{T}$ that will minimize,

$$
\sqrt{\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}-\beta_{2} x_{i}^{2}\right)^{2}}
$$

You do this by setting $\hat{\beta}=\left(A^{T} A\right)^{-1} A^{T} v$ where $A \in \mathbb{R}^{n \times 3}$ and $v \in \mathbb{R}^{n}$. Determine A and v.
(b) Assume now that you wish to find $\hat{\beta}$ using gradient descent. For this you compute the gradient descent step with learning rate $\eta>0$, via,

$$
\beta_{t+1}=\beta_{t}-\eta 2 A^{T}\left(A \beta_{t}-v\right)=\left(I-2 \eta A^{T} A\right) \beta_{t}+2 \eta A^{T} v=G(\eta) \beta_{t}+2 \eta A^{T} v
$$

where the matrix $G(\eta)=I-2 \eta A^{T} A$ depends on the learning rate. You set the learning rate at a low enough value, η^{*} such that $\beta_{t} \rightarrow \hat{\beta}$ (gradient descent converges).

Let the eigenvalues of $G\left(\eta^{*}\right)$ be λ_{1}, λ_{2} and λ_{3}. Below are four alternative plots of λ_{1}, λ_{2} and λ_{3} on the complex plane. For each of them, determine if it is possible or not and if not, explain why.

(i) Possible / Impossible:
(ii) Possible / Impossible:
(iii) Possible / Impossible:
(iv) Possible / Impossible:

Question 3

(a) Consider the vectors $v_{1}=[1,1,0,0]^{T}, v_{2}=[1,1,1,1]^{T}$ and the 4×2 matrix $A=\left[v_{1} v_{2}\right]$. Determine a QR factorization of A having the form $A=Q R$ where Q is a 4×2 matrix with orthonormal columns and R is an upper triangular matrix. Choose Q and R such that neither have negative entries. Throughout this question, avoid using decimal points, but rather use exact arithmetic.
(b) Let $b=\left[\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right]^{T}$. You now wish to find an approximate solution to $A x=b$ in the sense that x minimizes $\|A x-b\|\left(\|\cdot\|\right.$ is the L_{2} norm $)$. Use your $Q R$ factorization from the previous exercise to find x.

Question 4

(a) Consider a collection of N, n-vectors on which you execute the k-means algorithm. Denote the vectors by x_{1}, \ldots, x_{N} and denote by G_{j} the set of indices of vectors in group j resulting from k-means. Thus for example if $G_{3}=\{17,21,302\}$ then the vectors x_{17}, x_{21} and x_{302} make up group 3. Denote,

$$
z_{j}=\frac{1}{\left|G_{j}\right|} \sum_{i \in G_{j}} x_{j}, \quad \text { for } \quad j=1, \ldots, k
$$

In general, k-means is only a heuristic and its solution does not always exactly minimize the clustering objective,

$$
J=\sum_{j=1}^{k} \sum_{i \in G_{j}}\left\|x_{i}-z_{j}\right\|^{2}
$$

However, sometimes it does. For part (a), assume that $n=2, k=2$ and $N=6$ with,

$$
x_{1}=\left[\begin{array}{l}
9 \\
9
\end{array}\right], \quad x_{2}=\left[\begin{array}{l}
10 \\
10
\end{array}\right], \quad x_{3}=\left[\begin{array}{l}
11 \\
11
\end{array}\right], \quad x_{4}=\left[\begin{array}{l}
-9 \\
-9
\end{array}\right], \quad x_{5}=\left[\begin{array}{l}
-10 \\
-10
\end{array}\right], \quad x_{6}=\left[\begin{array}{l}
-11 \\
-11
\end{array}\right]
$$

Find G_{1}, G_{2}, z_{1} and z_{2} that minimize J.
(b) Returning to general n, N and k. Does it always hold that,

$$
\sum_{i \in G_{j}}\left\|x_{i}-z_{j}\right\|^{2} \leq \sum_{i \in G_{j}}\left\|x_{i}-z\right\|^{2}
$$

for any $j \in\{1, \ldots, k\}$ and any $z \in \mathbb{R}^{n}$? If so prove why, otherwise, explain why not or present a counter-example.

Question 5

(a) Consider the linear dynamical system, $x_{t+1}=A x_{t}$ with,

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

Find the eigenvalues of A and corresponding eigenvectors where the second coordinate of each eigenvector is 1 . To simplify notation, you may use the golden ratio $\psi=\frac{1}{2}(1+\sqrt{5})$ as well the fact that $1-\psi=\frac{1}{2}(1-\sqrt{5})$ and $\psi=1 /(\psi-1)$.
(b) Assume now that $x_{0}=\left[\begin{array}{ll}\psi & 1\end{array}\right]^{T}$. And denote the scalar q_{t} by,

$$
q_{t}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x_{t} .
$$

What is the smallest (integer) t for which $q_{t} \geq 1000$?

