

This exam paper must not be removed from the venue

Venue	
Seat Number	
Student Number	
Family Name	
First Name	

School of Mathematics & Physics

EXAMINATION

Semester Two Final Examinations, 2019

MATH7502 Mathematics for Data Science 2

This paper is for St Lucia Campus students.

Examination Duration:	180 minutes	For Examiner	lse Only
Reading Time:	10 minutes	Question	Mark
Exam Conditions:		1a	
This is a Central Examination		-	
This is a Closed Book Examination - specified materials permitted		1b	
		2a	
During reading time - write only on the rough paper provided		2b	
This examination paper will be released to the Library		За	
Materials Permitted In The Exam Venue:		3b	
(No electronic aids are permitted e.g. laptops, phones)		4a	
Calculators - Any calculator permitted - unrestricted		4b	
One A4 sheet of handwritten or typed notes double sided is permitted		5a	
Materials To Be Supplied To Students:		5b	
None		Total	

Instructions To Students:

Additional exam materials (eg. answer booklets, rough paper) will be provided upon request.

Total _____

Instructions:

There are 5 questions, with 20 points each. Each question has two items. Item (a) worth 14 points and item (b) worth 6 points.

Answer all questions on this exam paper.

Use the other side of the paper if additional space is required.

(a) You may use the singular value decomposition (SVD) to answer this question. Consider a 1000×50 data matrix A, summarizing data of 1000 individuals and 50 features with rank(A) = 49. Denote the eigenvalues of AA^T by $\lambda_1, \lambda_2, \ldots$ with $\lambda_i \ge \lambda_j$ for j > i. What is λ_{50} ? Explain your answer.

(b) Assume now that $\lambda_1 = \lambda_2 = \ldots = \lambda_{49} = 4$. Determine,

$$\sqrt{\sum_{i=1}^{1000} \sum_{j=1}^{50} A_{ij}^2}.$$

(a) Assume you are presented with pairs of data points $(x_1, y_1), \ldots, (x_n, y_n)$ where $x_i \neq x_j$ for $i \neq j$. To describe this data, you wish to fit a model,

$$y = \beta_0 + \beta_1 x + \beta_2 x^2,$$

by selecting $\boldsymbol{\beta} = [\beta_0, \beta_1, \beta_2]^T$ that will minimize,

$$\sqrt{\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i - \beta_2 x_i^2)^2}.$$

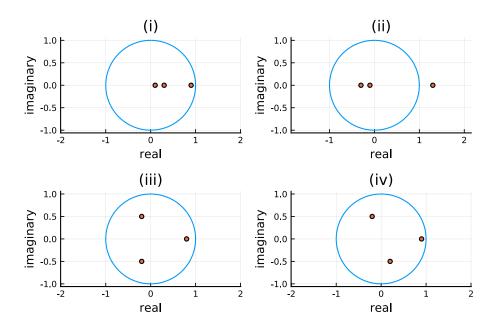
You do this by setting $\hat{\beta} = (A^T A)^{-1} A^T v$ where $A \in \mathbb{R}^{n \times 3}$ and $v \in \mathbb{R}^n$. Determine A and v.

(b) Assume now that you wish to find $\hat{\beta}$ using gradient descent. For this you compute the gradient descent step with learning rate $\eta > 0$, via,

$$\beta_{t+1} = \beta_t - \eta 2A^T (A\beta_t - v) = (I - 2\eta A^T A)\beta_t + 2\eta A^T v = G(\eta)\beta_t + 2\eta A^T v,$$

where the matrix $G(\eta) = I - 2\eta A^T A$ depends on the learning rate. You set the learning rate at a low enough value, η^* such that $\beta_t \to \hat{\beta}$ (gradient descent converges).

Let the eigenvalues of $G(\eta^*)$ be λ_1, λ_2 and λ_3 . Below are four alternative plots of λ_1, λ_2 and λ_3 on the complex plane. For each of them, determine if it is possible or not and if not, explain why.



(i) Possible / Impossible:

(ii) Possible / Impossible:

- (iii) Possible / Impossible:
- (iv) Possible / Impossible:

(a) Consider the vectors $v_1 = [1, 1, 0, 0]^T$, $v_2 = [1, 1, 1, 1]^T$ and the 4×2 matrix $A = [v_1 \ v_2]$. Determine a QR factorization of A having the form A = QR where Q is a 4×2 matrix with orthonormal columns and R is an upper triangular matrix. Choose Q and R such that neither have negative entries. Throughout this question, avoid using decimal points, but rather use exact arithmetic. (b) Let $b = [0 \ 1 \ 1 \ 0]^T$. You now wish to find an approximate solution to Ax = b in the sense that x minimizes ||Ax - b|| ($|| \cdot ||$ is the L_2 norm). Use your QR factorization from the previous exercise to find x.

(a) Consider a collection of N, *n*-vectors on which you execute the *k*-means algorithm. Denote the vectors by x_1, \ldots, x_N and denote by G_j the set of indices of vectors in group j resulting from *k*-means. Thus for example if $G_3 = \{17, 21, 302\}$ then the vectors x_{17}, x_{21} and x_{302} make up group 3. Denote,

$$z_j = \frac{1}{|G_j|} \sum_{i \in G_j} x_j, \quad \text{for} \quad j = 1, \dots, k.$$

In general, k-means is only a heuristic and its solution does not always exactly minimize the clustering objective,

$$J = \sum_{j=1}^{k} \sum_{i \in G_j} ||x_i - z_j||^2.$$

However, sometimes it does. For part (a), assume that n = 2, k = 2 and N = 6 with,

$$x_1 = \begin{bmatrix} 9\\ 9 \end{bmatrix}, \quad x_2 = \begin{bmatrix} 10\\ 10 \end{bmatrix}, \quad x_3 = \begin{bmatrix} 11\\ 11 \end{bmatrix}, \quad x_4 = \begin{bmatrix} -9\\ -9 \end{bmatrix}, \quad x_5 = \begin{bmatrix} -10\\ -10 \end{bmatrix}, \quad x_6 = \begin{bmatrix} -11\\ -11 \end{bmatrix}.$$

Find G_1 , G_2 , z_1 and z_2 that minimize J.

(b) Returning to general n, N and k. Does it always hold that,

$$\sum_{i \in G_j} ||x_i - z_j||^2 \le \sum_{i \in G_j} ||x_i - z_j||^2,$$

for any $j \in \{1, ..., k\}$ and any $z \in \mathbb{R}^n$? If so prove why, otherwise, explain why not or present a counter-example.

(a) Consider the linear dynamical system, $x_{t+1} = Ax_t$ with,

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

Find the eigenvalues of A and corresponding eigenvectors where the second coordinate of each eigenvector is 1. To simplify notation, you may use the golden ratio $\psi = \frac{1}{2}(1 + \sqrt{5})$ as well the fact that $1 - \psi = \frac{1}{2}(1 - \sqrt{5})$ and $\psi = 1/(\psi - 1)$.

(b) Assume now that $x_0 = [\psi \ 1]^T$. And denote the scalar q_t by,

$$q_t = [1 \ 0] x_t.$$

What is the smallest (integer) t for which $q_t \ge 1000$?

END OF EXAMINATION