Markov Chain

1. Definition

In[1]:

A=[0.90.150.25; 0.075 0.8 0.25; 0.025 0.05 0.5 J;
x_1=1[0,1,0];

Bl = A*x_1;

printin("At time n+1, the distribution is:","[",B1',"]")

At time n+1, the distribution is:[[0.15 0.8 0.05]]

In line 1 we construct a 3*3 matrix.
In line 2 we set a stochastic row vector x_1.

The distribution over states is line 3 which A multiplied by x_1.

In [2]:

A=[0.90.150.25; 0.0750.8 0.25; 0.0250.050.5 J;
x_1=10,1,0];

B2 = A*B1;

printin("At time n+2, the distribution is:","[",B2',"]")

At time n+2, the distribution is:[[0.2675 0.66375 0.06875]]

Similar function with before, calculate the distribution at time n+2

In [3]:

A=[0.90.150.25; 0.075 0.8 0.25; 0.025 0.05 0.5 J;
x_1=1[0,1,0];

B3 = A*B2;

printin("At time n+3, the distribution is:","[",B3","]")

At time n+3, the distribution is:[[0.3575 0.56825 0.07425]]

Similar function with before, calculate the distribution at time n+3

In [4]:

A=[0.90.150.25; 0.075 0.8 0.25; 0.0250.050.5 J;
x_1=1[0,1,0];

B4 = A*B3;

printin("At time n+4, the distribution is:","[",B4',"]")



At time n+4, the distribution is:[[0.42555 0.499975 0.074475]]

Similar function with before, calculate the distribution at time n+4

2. Examples of Markov chains

In [5]:

T =210;
A=[0.90.150.25; 0.075 0.8 0.25; 0.025 0.05 0.5 J;
x_1=1[0,1,0];
state_traj = [x_1 zeros(3,T-1) ]; # State trajectory
for t=1:T-1 # Dynamics recursion

state_traj[:,t+1] = A*state_traj[:,t];
end
using Plots
plot(1:T, state_traj', xlabel = "Time t",

label = ["Bull Market", "Bear Market", "Stagnant Market"])

Out[5]:
050 100 150 200 0.00 0.25 0.50 0.75 1.00 Time t Bull Market Bear Market Stagnant Market

Demonstration 1:

In line 1 we set the calculate time as 210.

In line 2 we construct a 3 3 matrix.

In line 3 we set a stochastic row vector x_1.

In line 4 we conbine the x_1 vector and zero matrix to be a new matrix state_traj.

In line 5~7, we use dynamics recursion to update the state_traj matrix's value by Astate_traj.

In line 8~9, we import and use plot function to draw markov chain prediction charm.

In [10]:
T =210 ;
A=[0.90.150.25; 0.075 0.8 0.25; 0.025 0.05 0.5 J;
x_2 =[0.3,0.4,0.3];
state_traj = [x_2 zeros(3,T-1) 1; # State trajectory
for t=1:T-1 # Dynamics recursion

state_traj[:,t+1] = A*state_traj[:,t];
end
using Plots
plot(1:T, state_traj’, xlabel = "Time t",

label = ["Bull Market", "Bear Market", "Stagnant Market"])

Out[10]:



050 100 150 200 0.1 0.2 0.3 0.4 0.5 0.6 Time t Bull Market Bear Market Stagnant Market

Demonstration 2:

In line 1 we set the calculate time as 210.

In line 2 we construct a 3 * 3 matrix.

In line 3 we set a stochastic row vector x_2.

In line 4 we conbine the x_2 vector and zero matrix to be a new matrix state_tra;.

In line 5~7, we use dynamics recursion to update the state_traj matrix's value by Astate_traj.

In line 8~9, we import and use plot function to draw markov chain prediction charm.

In[11]:
T=210;
A=[0.90.150.25; 0.075 0.8 0.25; 0.025 0.05 0.5 J;
x_3 =1[0.5,0.2,0.1];
state_traj = [x_3 zeros(3,T-1) ]; # State trajectory
for t=1:T-1 # Dynamics recursion

state_traj[:,t+1] = A*state_traj[:,t];
end
using Plots
plot(1:T, state_traj', xlabel = "Time t",

label = ["Bull Market", "Bear Market", "Stagnant Market"])

Out[11]:
050 100 150 200 0.1 0.2 0.3 0.4 0.5 Time t Bull Market Bear Market Stagnant Market

Demonstration 3: In line 1 we set the calculate time as 210.

In line 2 we construct a 3 * 3 matrix.

In line 3 we set a stochastic row vector x_3.

In line 4 we conbine the x_3 vector and zero matrix to be a new matrix state_tra;.

In line 5~7, we use dynamics recursion to update the state_traj matrix's value by Astate_traj.

In line 8~9, we import and use plot function to draw markov chain prediction charm.



