
10/18/2019 [MATH7502] Second Order Optimisation

https://www.juliabox.com/notebook/notebooks/%5BMATH7502%5D Second Order Optimisation.ipynb# 1/8

Second Order Optimization
By Hrishikesh Patel, Raghav Dhanuka, Siddharth Uniyal & Dicky Ardian Yunindra Wardana

1) Non-linear Equations and Least Squares

Equations not having form or are considered as non-linear equations. 𝑓(𝑥) = 𝑎𝑥 + 𝑏 𝑓(𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

i.e. is a non-liner equation.𝑓(𝑥) = +𝑒𝑥 𝑥2

1.1) Set of Non-linear equations

Consider a set of m equations in n variables .

Here equation is also a residual. And is a vector of unknowns.

Collectively , where is a vector of residuals.

, . . . ,𝑥1 𝑥𝑛

(𝑥) = 0;𝑓𝑖 𝑖 = 1, . . . ,𝑚

𝑖𝑡ℎ (𝑥)𝑓𝑖 𝑖𝑡ℎ 𝑥 = (, . . . ,)𝑥1 𝑥𝑛

𝑓(𝑥) = ((𝑥), . . . , (𝑥))𝑓1 𝑓𝑚 𝑓(𝑥)

For example,

Consider a system of two non-linear equations and .

Here is a 2-vector of unknowns,

 and are two residuals and

 is a vector of residuals.

+ (= 4𝑒𝑥1 𝑥2)
3 (+ 𝑐𝑜𝑠() = 10𝑥1)

2 𝑥2

𝑥 = (,)𝑥1 𝑥2

(𝑥) = + (− 4𝑓1 𝑒𝑥1 𝑥2)
3 (𝑥) = (+ 𝑐𝑜𝑠() − 10𝑓2 𝑥1)

2 𝑥2

𝑓(𝑥) = (+ (− 4, (+ 𝑐𝑜𝑠() − 10)𝑒𝑥1 𝑥2)
3 𝑥1)

2 𝑥2

1.2) Non-linear Least squares

Here our goal is to find which minimizes .

Optimality condition for any being a solution is to satisfy .

Important: The optimality condition is necessary condition but not sufficient. There may be other values that
satisfy the condition but they are not solutions.

�̂� = (𝑥 +. . . + (𝑥‖𝑓(𝑥)‖2 𝑓1)
2 𝑓𝑚)2

�̂� ∇ = 0‖𝑓(𝑥)‖2

2𝐷𝑓(𝑥 𝑓() = 0)𝑇 �̂�

1.3) Difficulty in solving Non-linear Least squares problem

10/18/2019 [MATH7502] Second Order Optimisation

https://www.juliabox.com/notebook/notebooks/%5BMATH7502%5D Second Order Optimisation.ipynb# 2/8

Non-linear least squares are difficult to solve in reality as there is no luxury to have QR factorisation like in
Linear equations and least squares problem.

However, there are some heuristics algorithms like following are useful for solving the equations.
1) Gauss-Newton algorithm
2) Levenberg–Marquardt algorithm

Now, if the function is convex then it reduces computation to find the minimum value of the function. Let's
understand the concept of Convexity.

Convexity

What is convexity ?

A function is convex if its graph remains above its tangents.

e.g.
It is clear that the tangents remain below the graph of
𝑓(𝑥) = 𝑥2

𝑥2

Mathematically, function is convex if its Hessian matrix (second derivative matrix) is positive
semidefinite at all x.

𝐹 (, . . . ,)𝑥1 𝑥𝑛

Why convexity ?

Convexity prevents two local minima and hence if function is convex then it would have usually one minimum
value.

Newton Algorithm
= − (▽𝑓(𝑥 ▽ 𝑓(𝑥) ▽ 𝑓(𝑥 ∗ 𝑓(𝑥)𝑥𝑘+1 𝑥𝑘)𝑇)−1)𝑇

10/18/2019 [MATH7502] Second Order Optimisation

https://www.juliabox.com/notebook/notebooks/%5BMATH7502%5D Second Order Optimisation.ipynb# 3/8

𝐻 =▽𝑓(𝑥 ▽ 𝑓(𝑥))𝑇

In [2]:

In [3]:

Out[2]:

newton (generic function with 1 method)

(Dfk'Dfk) matrix has dependent Columns, therefore, Quitting

Moved 3 steps before quitting.

using LinearAlgebra,Plots

function newton(f, Df, x1; kmax = 20, tol = 1e-6)
 x = x1
 n = length(x)
 fnorms = zeros(0,1)
 for k = 1:kmax
 fk = f(x)
 Dfk = Df(x)
 fnorms = [fnorms; norm(fk)]
 if norm(fk) < tol
 break
 end

 if det(Dfk'Dfk) == 0
 println("(Dfk'Dfk) matrix has dependent Columns, therefore, Quitting")
 break
 end

 x = x - inv(Dfk'Dfk)*Dfk'fk

 end
 return x, fnorms
end

f(x) = (x[1]-3)^2/4 + (x[2]-5)^2/9
Df(x) = [(x[1]-3)/2 2*(x[2]-5)/9]

x, gnorms = newton(f, Df, [0.5, 1.1])
println("")
println("Moved ", length(gnorms), " steps before quitting.")

10/18/2019 [MATH7502] Second Order Optimisation

https://www.juliabox.com/notebook/notebooks/%5BMATH7502%5D Second Order Optimisation.ipynb# 4/8

In [4]:

levenberg-Marquardt Algorithm
= − (▽𝑓(𝑥 ▽ 𝑓(𝑥) + 𝜆𝐼 ▽ 𝑓(𝑥 ∗ 𝑓(𝑥)𝑥𝑘+1 𝑥𝑘)𝑇)−1)𝑇

Out[4]:

1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

k

|f|

plot(gnorms, shape=:circle, legend = false, xlabel = "k", ylabel = "|f|")

10/18/2019 [MATH7502] Second Order Optimisation

https://www.juliabox.com/notebook/notebooks/%5BMATH7502%5D Second Order Optimisation.ipynb# 5/8

In [5]:

In [6]:

Out[5]:

levenberg_marquardt (generic function with 1 method)

Moved 10 steps before function converges to minimum with final step [2.9999
9; 4.97316]

eye(n) = 1.0 .* Matrix(I,n,n)
function levenberg_marquardt(f, Df, x1, lambda1; kmax=100, tol=1e-6)
 n = length(x1)
 x = x1
 lambda = lambda1
 objectives = zeros(0,1)
 residuals = zeros(0,1)

 for k = 1:kmax
 fk = f(x)
 Dfk = Df(x)

 objectives = [objectives; norm(fk)^2]
 residuals = [residuals; norm(2*Dfk'*fk)]

 if norm(2*Dfk'*fk) < tol
 break
 end

 xt = x - inv(Dfk'Dfk + lambda*eye(n))*Dfk'fk

 if norm(f(xt)) < norm(fk)
 lambda = 0.8*lambda
 x = xt
 else
 lambda = 2.0*lambda
 end
 end

 return x, Dict([("objectives", objectives),("residuals", residuals)])
end

f(x) = (x[1]-3)^2/4 + (x[2]-5)^2/9
Df(x) = [(x[1]-3)/2 2*(x[2]-5)/9]

x, history = levenberg_marquardt(f, Df, [0.5, 1.1], 1.0)

println("Moved ", length(history["residuals"][1:10]), " steps before function converges to

10/18/2019 [MATH7502] Second Order Optimisation

https://www.juliabox.com/notebook/notebooks/%5BMATH7502%5D Second Order Optimisation.ipynb# 6/8

In [7]:

Data Fitting
As in linear model fitting, we choose the parameter θ by (approximately) minimizing the sum of the squares of
the prediction residuals

Function we have used here is :

∑
𝑖=1

𝑁

((; 𝜃) −)�̂� 𝑥(𝑖) 𝑦(𝑖)
2

𝑓 (𝑥; 𝜃) = cos(𝑥 +)𝜃1𝑒
𝑥𝜃2 𝜃3 𝜃4

Out[7]:

2 4 6 8 10
0

1

2

3

k

|f|

plot(sqrt.(history["objectives"][1:10]), shape = :circle,legend = false, xlabel = "k", ylab

10/18/2019 [MATH7502] Second Order Optimisation

https://www.juliabox.com/notebook/notebooks/%5BMATH7502%5D Second Order Optimisation.ipynb# 7/8

In [8]:

Out[8]:

0 5 10 15 20
-1.0

-0.5

0.0

0.5

using Random
Random.seed!(45)

theta_ex = [1, -0.2, pi, pi/3]
#Choose 60 points x between 0 and 20.
M = 30
xd = [5*rand(M); 5 .+ 15*rand(M)]

Evaluate function at these points.
yd = theta_ex[1] * exp.(theta_ex[2]*xd) .*cos.(theta_ex[3] * xd .+ theta_ex[4])

Create a random perturbation of yd.
N = length(xd)
yd = yd .* (1 .+ 0.2*randn(N)) .+ 0.015 * randn(N)

Plot data points.
using Plots
scatter(xd, yd, legend=false)

10/18/2019 [MATH7502] Second Order Optimisation

https://www.juliabox.com/notebook/notebooks/%5BMATH7502%5D Second Order Optimisation.ipynb# 8/8

In [10]:

In []:

Out[10]:

0 5 10 15 20
-1.0

-0.5

0.0

0.5

f(theta) = theta[1] * exp.(theta[2]*xd) .*cos.(theta[3] * xd .+ theta[4]) - yd
Df(theta) = hcat(exp.(theta[2]*xd) .* cos.(theta[3] * xd .+ theta[4]),theta[1] * (xd .* ex
cos.(theta[3] * xd .+ theta[4])),-theta[1] * (exp.(theta[2]*xd) .* xd .*sin.(theta[3] * xd
-theta[1] * (exp.(theta[2]*xd) .*sin.(theta[3] * xd .+ theta[4])))

theta1 = [1, 0, 1, 0]
theta, history = levenberg_marquardt(f, Df, theta1, 1.0)
theta

Plot the fitted model.
x = range(0, stop= 20, length = 500)
y=theta[1]*exp.(theta[2]*x) .* cos.(theta[3]*x .+ theta[4])
plot!(x, y, legend = false)

