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Second Order Optimization
By Hrishikesh Patel, Raghav Dhanuka, Siddharth Uniyal & Dicky Ardian Yunindra Wardana

1) Non-linear Equations and Least Squares

Equations not having form  or  are considered as non-linear equations. 𝑓(𝑥) = 𝑎𝑥 + 𝑏 𝑓(𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

i.e.  is a non-liner equation.𝑓(𝑥) = +𝑒𝑥 𝑥2

1.1) Set of Non-linear equations

Consider a set of m equations in n variables  .

  

Here  equation  is also a  residual. And  is a vector of unknowns. 

Collectively , where  is a vector of residuals.

, . . . ,𝑥1 𝑥𝑛

(𝑥) = 0;𝑓𝑖 𝑖 = 1, . . . ,𝑚

𝑖𝑡ℎ (𝑥)𝑓𝑖 𝑖𝑡ℎ 𝑥 = ( , . . . , )𝑥1 𝑥𝑛

𝑓(𝑥) = ( (𝑥), . . . , (𝑥))𝑓1 𝑓𝑚 𝑓(𝑥)

For example, 

Consider a system of two non-linear equations  and . 

Here  is a 2-vector of unknowns,

 and  are two residuals and 

 is a vector of residuals.

+ ( = 4𝑒𝑥1 𝑥2)
3 ( + 𝑐𝑜𝑠( ) = 10𝑥1)

2 𝑥2

𝑥 = ( , )𝑥1 𝑥2

(𝑥) = + ( − 4𝑓1 𝑒𝑥1 𝑥2)
3 (𝑥) = ( + 𝑐𝑜𝑠( ) − 10𝑓2 𝑥1)

2 𝑥2

𝑓(𝑥) = ( + ( − 4,  ( + 𝑐𝑜𝑠( ) − 10)𝑒𝑥1 𝑥2)
3 𝑥1)

2 𝑥2

1.2) Non-linear Least squares

Here our goal is to find  which minimizes . 

Optimality condition for any  being a solution is to satisfy .

 

Important: The optimality condition is necessary condition but not sufficient. There may be other values that
satisfy the condition but they are not solutions.

�̂� = (𝑥 +. . . + (𝑥‖𝑓(𝑥)‖2 𝑓1 )
2 𝑓𝑚 )2

�̂� ∇ = 0‖𝑓(𝑥)‖2

2𝐷𝑓(𝑥 𝑓( ) = 0)𝑇 �̂� 

1.3) Difficulty in solving Non-linear Least squares problem
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Non-linear least squares are difficult to solve in reality as there is no luxury to have QR factorisation like in
Linear equations and least squares problem. 

However, there are some heuristics algorithms like following are useful for solving the equations.
1) Gauss-Newton algorithm 
2) Levenberg–Marquardt algorithm 

Now, if the function is convex then it reduces computation to find the minimum value of the function. Let's
understand the concept of Convexity.

Convexity

What is convexity ?

A function is convex if its graph remains above its tangents.

e.g.  
It is clear that the tangents remain below the graph of 
𝑓(𝑥) = 𝑥2

𝑥2

Mathematically, function  is convex if its Hessian matrix (second derivative matrix) is positive
semidefinite at all x.

𝐹 ( , . . . , )𝑥1 𝑥𝑛

Why convexity ?

Convexity prevents two local minima and hence if function is convex then it would have usually one minimum
value.

Newton Algorithm
= − (▽𝑓(𝑥 ▽ 𝑓(𝑥) ▽ 𝑓(𝑥 ∗ 𝑓(𝑥)𝑥𝑘+1 𝑥𝑘 )𝑇 )−1 )𝑇
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𝐻 =▽𝑓(𝑥 ▽ 𝑓(𝑥))𝑇

In [2]:

In [3]:

Out[2]:

newton (generic function with 1 method)

(Dfk'Dfk) matrix has dependent Columns, therefore, Quitting 
 
Moved 3 steps before quitting. 

using LinearAlgebra,Plots

function newton(f, Df, x1; kmax = 20, tol = 1e-6)
    x = x1
    n = length(x)
    fnorms = zeros(0,1)
    for k = 1:kmax
        fk = f(x)
        Dfk = Df(x)
        fnorms = [fnorms; norm(fk)]
        if norm(fk) < tol
            break
        end
        
        if det(Dfk'Dfk) == 0
            println("(Dfk'Dfk) matrix has dependent Columns, therefore, Quitting")
            break            
        end
        
        x = x - inv(Dfk'Dfk)*Dfk'fk

    end
    return x, fnorms
end

f(x) = (x[1]-3)^2/4 + (x[2]-5)^2/9
Df(x) = [(x[1]-3)/2 2*(x[2]-5)/9]

x, gnorms = newton(f, Df, [0.5, 1.1])
println("")
println("Moved ", length(gnorms), " steps before quitting.")
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In [4]:

levenberg-Marquardt Algorithm
= − (▽𝑓(𝑥 ▽ 𝑓(𝑥) + 𝜆𝐼 ▽ 𝑓(𝑥 ∗ 𝑓(𝑥)𝑥𝑘+1 𝑥𝑘 )𝑇 )−1 )𝑇

Out[4]:
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plot(gnorms, shape=:circle, legend = false, xlabel = "k", ylabel = "|f|")
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In [5]:

In [6]:

Out[5]:

levenberg_marquardt (generic function with 1 method)

Moved 10 steps before function converges to minimum with final step [2.9999
9; 4.97316] 

eye(n) = 1.0 .* Matrix(I,n,n)
function levenberg_marquardt(f, Df, x1, lambda1; kmax=100, tol=1e-6)
    n = length(x1)
    x = x1
    lambda = lambda1
    objectives = zeros(0,1)
    residuals = zeros(0,1)

    for k = 1:kmax
        fk = f(x)
        Dfk = Df(x)
        
        objectives = [objectives; norm(fk)^2]
        residuals = [residuals; norm(2*Dfk'*fk)]
        
        if norm(2*Dfk'*fk) < tol
            break
        end
        
        xt = x - inv(Dfk'Dfk + lambda*eye(n))*Dfk'fk
        
        if norm(f(xt)) < norm(fk)
            lambda = 0.8*lambda
            x = xt
        else
            lambda = 2.0*lambda
        end
    end
    
    return x, Dict([("objectives", objectives),("residuals", residuals)])
end

f(x) = (x[1]-3)^2/4 + (x[2]-5)^2/9
Df(x) = [(x[1]-3)/2 2*(x[2]-5)/9]

x, history = levenberg_marquardt(f, Df, [0.5, 1.1], 1.0)

println("Moved ", length(history["residuals"][1:10]), " steps before function converges to 
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In [7]:

Data Fitting
As in linear model fitting, we choose the parameter θ by (approximately) minimizing the sum of the squares of
the prediction residuals

Function we have used here is :

∑
𝑖=1

𝑁

( ( ; 𝜃) − )�̂� 𝑥(𝑖) 𝑦(𝑖)
2

𝑓 (𝑥; 𝜃) = cos( 𝑥 + )𝜃1𝑒
𝑥𝜃2 𝜃3 𝜃4

Out[7]:
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plot(sqrt.(history["objectives"][1:10]), shape = :circle,legend = false, xlabel = "k", ylab
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In [8]:

Out[8]:

0 5 10 15 20
-1.0

-0.5

0.0

0.5

using Random
Random.seed!(45)

theta_ex = [1, -0.2, pi, pi/3]
#Choose 60 points x between 0 and 20.
M = 30
xd = [5*rand(M); 5 .+ 15*rand(M)]

# Evaluate function at these points.
yd = theta_ex[1] * exp.(theta_ex[2]*xd) .*cos.(theta_ex[3] * xd .+ theta_ex[4])

# Create a random perturbation of yd.
N = length(xd)
yd = yd .* (1 .+ 0.2*randn(N)) .+ 0.015 * randn(N)

# Plot data points.
using Plots
scatter(xd, yd, legend=false)
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In [10]:

In [ ]:

Out[10]:
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f(theta) = theta[1] * exp.(theta[2]*xd) .*cos.(theta[3] * xd .+ theta[4]) - yd
Df(theta) = hcat(exp.(theta[2]*xd) .* cos.(theta[3] * xd .+ theta[4]),theta[1] * ( xd .* ex
cos.(theta[3] * xd .+ theta[4])),-theta[1] * ( exp.(theta[2]*xd) .* xd .*sin.(theta[3] * xd
-theta[1] * ( exp.(theta[2]*xd) .*sin.(theta[3] * xd .+ theta[4])) )

theta1 = [1, 0, 1, 0]
theta, history = levenberg_marquardt(f, Df, theta1, 1.0)
theta

# Plot the fitted model.
x = range(0, stop= 20, length = 500)
y=theta[1]*exp.(theta[2]*x) .* cos.(theta[3]*x .+ theta[4])
plot!(x, y, legend = false)


