10/18/2019 7502 math_project

Part1: Constrained Least Squares Problems
1. Linearly constrained least squares

the (linearly) constrained least squares problem (CLS) is

minimize || Ax — b||?

subjectto Cx = d

| Ax — b||? is the objective function and Cx=d are equality constraints, x is an n-vector, A is a m x n matrix, b is
an m-vector, C is a p x n matrix, and d is a p-vector.

X is a solution of CLS if Cx = d and || A% — b|| < ||Ax — b||? holds for any n-vector x that satisfies Cx = d
2.Methods of solving the constrained least squares problem
2.1 KKT equations optimality conditions in matrix-vector form:

2(ATA)%-24Tb+CTz=0,Cx=d
2 (AT A) CTl [x] B [ZATbI

Cc 0 llz d

put these together to get KKT conditions [
z

~ T T 17! 14T
then we get l’fl = lz(A A) ¢ } [ZA b]
Z C 0 d

2.2 QR factorization

3.Least norm problem (an important special case of Least Squares Problems)
minimize ||x]|%

subjectto cTx =d;,i=1,...,p

3.1 form Lagrangian function, with Lagrange multipliers
Z1, . Zp. L%, 2) = fX) + 21 (Fx —dy) + - + 2, (I x — d,)

3.2 optimality conditions are

oL/~ 2N n T 2 T 2 — 0 i — oL~ oy _ T —_0 =
a—xi(x, z) = 22;‘:1 (A A)ijxj - 2(A b)i + Z‘;:l zj(cj)i =0,i=1,...,n, E(X’ Z)=c¢/x—-d;=0,i=
1,...,p,

3.3 Lagrange Multipliers = Derivatives of the Cost

Our first example is in two dimensions. The function F is quadratic. The set K is linear.

F(x)=x}+x3
on the line
K:aixi+ax, =0

On the line K, we are looking for the point that is nearest to (0,0). The cost F(x) is distance squared. We can

discover this from simple calculus, after we bring the constraint equation a; x| + a; x, = b into the function
—_ 12 2

F(x) = x1 + x3

Multiply a; x1 + a; x5 — b by an unknown multiplier A and add it to F(x)

https://juliabox.com/notebook/notebooks/7502 math_project.ipynb# 111



10/18/2019 7502 math_project
Lagrangian L(x,A) = F(x) + Ma; x; + a;x, — b)

= x% + x% + Mayx1 + ayx, — b)
Set the derivatives dL/dx; and 0L/dx, and dL/d) to zero. Solve those three equations for x;, x5, A

0L/ox; =2x1 +Aa; =0
0L/8x2 = ZX2 + }\az =0
OL/ON = a1 x1 +ayx, — b

We can get
A= —2bl(a? + a3)
X1 =—-A1/2 = b/(a% + a%)
Xy = —-Aap/2 = ay b/(a% + a%)
X2 +x% = b*la + ad>

The derivative of the minimum cost with respect to the comtrainst level b is minus the Lagrange multtiplier:
dldb(b*/(a} + a3) ) = 2b/(a} + a3) = —A

Part2: Solving constrained least problems

1. Constraint least squares via KKT equations
Algorithm

Step 1 : Form Gram matrix. Compute AT A

Step 2 : Solve KKT equations by QR factorization and back substitution.

Time complexity : mn* + 2(n + p)3

An example of Constraint least squares via 'KKT equations in Julia:

Firstly, we randomly generate A, b, C, d

In [1]:
m=10; n=5; p = 2;
A = randn(m,n); b = randn(m); C = randn(p,n); d = randn(p);

Define the function cls_solve_kkt() to implement the algorithm.

In [2]:

function cls_solve KKT(A,b,C,d)

m, n = size(A)

p, n = size(C)

G = A'*A # Gram matrix

KKT = [2*%G C'; C zeros(p,p)] # KKT matrix

xzhat = KKT \ [2*A'*b; d]

return xzhat[1:n,:]

end; §

https://juliabox.com/notebook/notebooks/7502 math_project.ipynb# 2/11



10/18/2019 7502 math_project

Test the function cls_solve_kkt().

In [3]:

f
'cls_solve KKT(A,b,C,d)

out[3]:

5x1 Array{Float64,2}:
0.0990152352422455
0.11870067836607096
-0.490651246965513
0.6001981250682451
-9.22194625122020822

2. Constraint least squares via QR factorization

Algorithm

_ A - -
Step 1 : Compute the QR factorizations. lc] = [gl ] R, Qg = QR
2

~-T
Step 2 : Compute R  d by forward substitution.

~ ~T ~-T
Step 3 : Form right-hand side and solve Rw = 2Q QlTb — 2R  d via back substitution.
Step 4 : ComputeXx Form right-hand side and solve Rx = Q{b - (1/2)ng by back substitution.

Time complexity : 2(m + p)n® + 2np?

An example of Constraint least squares via QR factorization in Julia:

Define the function cls_solve_QR() to implement the algorithm.

In [4]:

using LinearAlgebra

function cls_solve_QR(A,b,C,d)

m, n = size(A)

p, n = size(C)

Q, R = qr([A; C])

Q = Matrix(Q)

Q1 = Q[1:m,:]

Q2 = Q[m+l:m+p,:]

Qtil, Rtil = LinearAlgebra.qr(Q2')
Qtil = Matrix(Qtil)

w = Rtil \ (2*Qtil’'*Q1'*b - 2*(Rtil'\d))
return xhat = R \ (Q1'*b - Q2'*w/2)
end;

Test the function cls_solve_QR() and compare the result with cls_solve_KKT().

Must be same!

https://juliabox.com/notebook/notebooks/7502 math_project.ipynb# 3/



10/18/2019 7502 math_project

In [5]:

cls_solve_QR(A,b,C,d)

Out[5]:

5-element Array{Float64,1}:
0.0990152352422457
0.11870067836607087
-0.4906512469655131
0.6001981250682452
-0.22194625122020828

3. Sparse constrained least squares

To deal with sparse matrices, the simplest way is to replace the QR factorizations with sparse QR factorizations
in the previous algorithms. Fortunately, the built-in function gr() can also realize sparse QR factorizations.

An example of solving sparse constraint least squares in Julia:

Notice that unlike cls_solve_KKT(), this function assumes b and d are vectors. The following formulation will
generate a sparse set of equations to solve if A and C are sparse.

In [6]:

function cls_solve_sparse(A,b,C,d)
m, n = size(A)

p, n = size(C)

bigA = [ zeros(n,n) A' C';

A -I/2 zeros(m,p) ;

C zeros(p,m) zeros(p,p) ]

xyzhat = bigA \ [zeros(n) ; b ; d]
return xhat = xyzhat[1l:n]

end;

A random formulation of A, b, C, d.
In [7]:

m
A

100; n = 50; p = 10;
randn(m,n); b = randn(m); C = randn(p,n); d = randn(p);

Again, compare based on result of the algorithms of computing via KKT equation and QR factorization. We
found the two algorithms agree.

In [8]:

x1 = cls_solve KKT(A,b,C,d);
x2 = cls_solve_sparse(A,b,C,d);
norm(x1-x2)

out[8]:

8.863201352429109%e-15

https://juliabox.com/notebook/notebooks/7502 math_project.ipynb# 4/11



10/18/2019 7502 math_project

4. Solution of least norm problem
For the least norm problem, the KKT equation is reduced to
21 cT||x]_|o
C 011zl |4
Step 1 : QR factorization. Compute the QR factorization CT = QR
Step 2 : ComputeX. Solve RT y = d by forward substitution.
Step 3 : Compute x = Qy

Time complexity :2np*

Comparison of sloving least norm problem via different methods in Julia:

In julia, the backlash operator can be used to find the solution of equation Cx = d. Here is the comparison of
the results of solving a least norm problem by different methods.

In [9]:

p = 59; n = 500;

C = randn(p,n); d = randn(p);
# Solve using backslash

x1 = C\d;

# Solve using cls solve, which uses KKT system

x2 = cls_solve KKT(Matrix{Float64}(I, n, n), zeros(n), C, d);
# Using pseudo-inverse

x3 = pinv(C)*d;

norm(x1-x2)

out[9]:

6.832042562912264e-15

In [10]:
norm(x1-x3)
outf1e]:

5.904483805221459%¢e-16

The result is obvious that the three methods agree when they deal with least norm problem.

Part3: Constrained least squares applications

There are two main applications for constrained least squares, one is Linear quadratic control and another is
Linear quadratic state estimation. In the control problem, we can choose the inputs; they are under our control.
Once we choose the inputs, we know the state sequence. The inputs are typically actions that we take to affect
the state trajectory. In the estimation problem, the inputs (called process noise in the estimation problem) are
unknown, and the problem is to guess them.

https://juliabox.com/notebook/notebooks/7502 -math_project.ipynb# 5/11



10/18/2019 7502 math_project

Application 1: Linear quadratic control

dynamics equations

Joupur = 11 + -+ llyrl? = [Coxi|I? + -+ + [|Crxr |
Jipur = g1 + = + flur—y |2
The linear quadratic control problem (with initial and final state constraints) is
minimize Jowpu + pdinpus > [l Az = ]2
subject to x;.1 = A;x; + B,u,
init des

andx; =x", Xxpr=x

creating vector z which includes all the variable z = (xy, ..., X7, U1, ... , Ur_1)

- Cl -
G
i
A= Cryp
N
: Vel ]
Ay =/ B, ' 0
Ay 1 B, 0
f:' = ) " ¥ J =
.’1'[* g = / uq' 1 ]
T - o e
I _ | gt |

Example

In [11]:

H = randn(2,2); # creating 2*2 matrix

In [12]:

using LinearAlgebra
identity_matrix=Matrix{Float64}(I, 3, 3);# creating 3*3 identity matrix

https://juliabox.com/notebook/notebooks/7502 math_project.ipynb# 6/11



10/18/2019 7502 math_project

In [13]:

. kron(identity_matrix,H) # using kronecker function to block diagonal matrix

Out[13]:

6x6 Array{Float64,2}:

1.04291 0.0107771 0.0 0.0 2.0 0.0

-0.534264 0.578265 -0.0 0.0 -0.0 0.0

0.0 0.0 1.04291 0.0107771 0.9 0.0

-0.0 0.0 -0.534264 ©.578265 -0.9 0.0

0.0 0.0 0.9 0.0 1.04291 0.0107771

-0.0 0.0 -0.0 0.0 -0.534264 ©0.578265
In [14]:

function cls_solve(A,b,C,d)

m, n = size(A) |
p, n = size(C) (
Q, R = gr([A; C]) ‘
Q = Matrix(Q)

QL = Q[1:m,:]

Q2 = Q[m+l:m+p,:]

Qtil, Rtil = gr(Q2")

Qtil = Matrix(Qtil)

w = Rtil \ (2*Qtil'*Q1'*b - 2*(Rtil'\d))

return xhat = R \ (Q1'*b - Q2"*w/2)

end;

In [15]:

function eye(k)
matrix=I+zeros(k,k)

return matrix

end;

In [16]:

function lgr(A,B,C,x_init,x_des,T,rho)

n = size(A,1)

m = size(B,2)

p = size(C,1)

g = size(x_init,2)

Atil = [ kron(eye(T), C) zeros(p*T,m*(T-1)) ;zeros(m*(T-1), n*T) sqrt(rho)*eye(m*(T-1)) ]
btil = zeros(p*T + m*(T-1), q)

# We’ll construct Ctilde bit by bit

Ctilll = [ kron(eye(T-1), A) zeros(n*(T-1),n) ] -[ zeros(n*(T-1), n) eye(n*(T-1)) ]
Ctili12 = kron(eye(T-1), B)

ctil21l [eye(n) zeros(n,n*(T-1)); zeros(n,n*(T-1)) eye(n)]

Ctil22 = zeros(2*n,m*(T-1))

Ctil = [Ctilll Ctili2; Ctil2l Ctil22]

dtil = [zeros(n*(T-1), q); x_init; x_des]

z = cls_solve(Atil,btil,Ctil,dtil)

x = [z[(i-1)*n+1l:i*n,:] for i=1:T]
u = [zZ[n*T+(i-1)*m+1 : n*T+i*m, :] for i=1:T-1]
y = [C*xt for xt in x]

return x, u, y
end;

https://juliabox.com/notebook/notebooks/7502 math_project.ipynb# 7M1



10/18/2019 7502 math_project
x = [x[1], x[2], x[3], x[4], x[5],...... , x[T1]
u = [u[1], u[2], u[3], u[4], u[5],...... ,u[T]]

y = 1], y[2], ¥[3], y[4], ¥[5), ... .. , Y[T1]

In [17]:

using LinearAlgebra

A =[ ©.855 1.161 0.667;
©0.015 1.073 0.053;
-0.084 ©.059 1.022 ];

B = [-0.076; -08.139; 0.342 ];

C =[ ©.218 -3.597 -1.683 ];

n=3;p=1;m=1;

x_init = [0.496; -0.745; 1.394];

x_des = zeros(n,1);

T = 100; |

yol = zeros(T,1);
Xol = [ x_init zeros(n, T-1) ]; ’
for k=1:T-1

Xol[:,k+1] = A*Xolf[:,k];

end;

yol = C*Xol;

using Plots

plot(1:T, yol', legend = false)

out[17]:

04 .- \

02

0.1

1
0 25 50 75 100

hitps:/jjuliabox.com/notebook/notebooks/7502 math_project.ipynb# 8/11



10/18/2019 7502 math_project
x = [x[1], x[2], x[3], x[4], x[5],...... , x[T1]
u = [u[1], u[2], u[3], u[4], u[5],...... ,u[T]]

y = 1], y[2], ¥[3], y[4], ¥[5), ... .. , Y[T1]

In [17]:

using LinearAlgebra

A =[ ©.855 1.161 0.667;
©0.015 1.073 0.053;
-0.084 ©.059 1.022 ];

B = [-0.076; -08.139; 0.342 ];

C =[ ©.218 -3.597 -1.683 ];

n=3;p=1;m=1;

x_init = [0.496; -0.745; 1.394];

x_des = zeros(n,1);

T = 100; |

yol = zeros(T,1);
Xol = [ x_init zeros(n, T-1) ]; ’
for k=1:T-1

Xol[:,k+1] = A*Xolf[:,k];

end;

yol = C*Xol;

using Plots

plot(1:T, yol', legend = false)

out[17]:

04 .- \

02

0.1

1
0 25 50 75 100

hitps:/jjuliabox.com/notebook/notebooks/7502 math_project.ipynb# 8/11



10/18/2019

7502 math_project
In [18]:
i
‘rho = 0.2;
T = 1ee;
X, u, y = 1gr(A,B,C,x_init,x_des,T,rho)
- J_input = norm(u)~2
Out[18]:
©.7738942551160125
In [19]:
J_output = norm(y)~2
out[19]:

3.7829986463324596

In [20]:

out[20]:

ut

plot(1:T-1, vcat(u...), legend = false, xlabel="t",ylabel= "u_t")

03 -

02 \

0.0 -

|
l
1 !
25 50 75

https://juliabox.com/notebook/notebooks/7502 math_project.ipynb#

9/11



10/18/2019 7502 math_project

In [21]:

plot(1:T, vcat(y...), legend=false, xlabel = "t",ylabel = "y t")

Out[21]:

03 \

y t
(@)
N
1

01 — ...\‘\

. 1
0 25 50 75 100

Application2: Linear quadratic state estimation

Linear dynamical system equations
X141 = ArX, + B,w,

¥ =Cx; + v

Jmeas = 0117 + - + llorl* = 1ICixy = 1P + - + |Crxp — yr |1

0 2
Jproe = w1 ][+ - + Jlwr— |

Least squares state estimation. We will make our guesses of x1,...,xT and w1, ..., wT =1 so as to minimize
a weighted sum of our objectives, subject to the dynamics constraints:

minimize Jiyeas + AJproc

Subject to xt+1 = A,xt + Btw,

Type Markdown and LaTeX: a?

https:/fjuliabox.com/notebook/notebooks/7502 math_project.ipynb# 10/11



	scan_s4493576_2019-10-18-10-31-54
	scan_s4493576_2019-10-18-10-32-41
	scan_s4493576_2019-10-18-10-33-14
	scan_s4493576_2019-10-18-10-33-46
	scan_s4493576_2019-10-18-10-34-21
	scan_s4493576_2019-10-18-10-34-55
	scan_s4493576_2019-10-18-10-35-27
	scan_s4493576_2019-10-18-10-35-56
	scan_s4493576_2019-10-18-10-35-56
	scan_s4493576_2019-10-18-10-36-26
	scan_s4493576_2019-10-18-10-36-58

