Topic 5: Markovian (and Deterministic) Dynamic System

Group Members: Xiaomeng Cai, Shibo Ma, Gaoyu Lu, Ruiling Chen, Yang Len

The link of video: https://youtu.be/9WpuBwX-Q8Q(https://youtu.be/9WpuBwX-Q8Q).

Introduction

Definition

Markov chain is the simplest Markov model. It is a time series analysis method, it predicts the state of an event and development trend by using state-transition matrices.

Let us take the traffic light system as an example. Considered such a traffic light in practice, there are red, green and yellow. Three different colours run in a designed subsequence, red firstly, then green and yellow lastly. Then, this sequence can be seen as a state machine, each time of a colour appearing only depends on the last colour. Described in mathematics notation, $x_{1}=$ red, $x_{2}=$ green, $x_{3}=$ yellow, $x_{4}=$ red again, the state x_{i} is a deterministic pattern, with each state only determined by the last state.

Thus, we can deduce a linear dynamical system that is a simple model for a sequence x_{1}, x_{2}, \ldots in which each x_{t+1} is a linear function of x_{t} :

$$
x_{t+1}=A_{t} x_{t}, \quad t=1,2, \ldots
$$

The $n \times n$ matrices A_{t} are called the dynamics matrices. The equation above is called the dynamics or update equation.

This linear dynamical system is sometimes called a Markov model (after the mathematician Andrey Markov). Markov studied systems assumed that future states depend only on the current state, i.e. x_{t+1} depends only on x_{t}, and not additionally on x_{t-1}, x_{t-2}, \ldots

Transition matrix

In the example above there are three states for the system. Define X_{i} to be the probability of the system to be in state t after it was in state $t-1$ (at any observation). The matrix $A=X$ is called the Transition matrix of the Markov Chain.

Let us consider the transition matrix of traffic lights. Presume the sequence of the traffic lights starting from green, then yellow, and red. Here we can have a simple transition state table to show three different situations as below, in which each row represents the initial state of traffic lights and each column is the state after transiting.

	Green	Yellow	Red
Green	0	0	1
Yellow	1	0	0
Red	0	1	0

It can also be shown as a 3×3 marix $p=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$. Take the 1 in the first row as example. It means the green light will be on after the red is off.

Here we assume y as the state of each traffic light. If the red light is on, then we have

$$
y_{t}=\left[\begin{array}{c|c}
\text { Green } & 0 \\
\text { Yellow } & 0 \\
\text { Red } & 1
\end{array}\right] .
$$

Therefore, the sequence for which light will be on can be expressed as below,

$$
y_{t+1}=p \cdot y_{t}=\left[\begin{array}{c|c}
\text { Green } & 1 \\
\text { Yellow } & 0 \\
\text { Red } & 0
\end{array}\right]
$$

All the states thus can have the expression $y_{t}=p^{t} \cdot y_{0}$.

Property

Indenpency
A state S_{t} is Markov if and only if

$$
P\left[S_{t+1} \mid S_{t}\right]=P\left[S_{t+1} \mid S_{1}, \cdots, S_{t}\right]
$$

which means the memoryless attributes of the stochastic process. This process will own the attribute of Markov, if the conditional probability distrbution of this process's future state only depends on the current state, rather than the former sequence. Thus, these two events are independent from each other.

State Transition Matrix

For a Markov state s and successor state s^{\prime}, the state transition probability is defined by

$$
P_{s s^{\prime}}=P\left[S_{t+1}=s^{\prime} \mid S_{t}=s\right]
$$

State transition matrxi P defines transition probabilities from all states s to all successor states s^{\prime},

$$
P=\left[\begin{array}{ccc}
P_{11} & \cdots & P_{1 n} \\
\vdots & \ddots & \vdots \\
P_{n 1} & \cdots & P_{n n}
\end{array}\right]
$$

where each row of the matrix sums to 1.

Application

Take the weather obeservation data of Shanghai as an example, during which the Markov model will be deployed to forecast local weather.

Firstly, we will introduce the data that has been preprocessed throughout Python, in which the state 1 represents the sunny day, 2 is the cloudy day and 3 means rainy days. In the meantime, we choose the last day as the test set to verify the model.

In [8]:
import numpy as np
import pandas as pd
sh_weather = pd.read_csv("weather.csv")
print(sh_weather)

	ymd		degree	Unnamed: 3	Unnamed: 4	Unnamed:
0	2017/10/16	rain	3	NaN	NaN	sunny 1
1	2017/10/17	cloudy	2	NaN	NaN	cloudy 2
2	2017/10/18	cloudy	2	NaN	NaN	rain 3
3	2017/10/19	rain	3	NaN	NaN	NaN
4	2017/10/20	cloudy	2	NaN	NaN	NaN
5	2017/10/21	sunny	1	NaN	NaN	NaN
6	2017/10/22	sunny	1	NaN	NaN	NaN
7	2017/10/23	cloudy	2	NaN	NaN	NaN
8	2017/10/24	sunny	1	NaN	NaN	NaN
9	2017/10/25	sunny	1	NaN	NaN	NaN
10	2017/10/26	cloudy	2	NaN	NaN	NaN
11	2017/10/27	sunny	1	NaN	NaN	NaN
12	2017/10/28	cloudy	2	NaN	NaN	NaN
13	2017/10/29	sunny	1	NaN	NaN	NaN
14	2017/10/30	cloudy	2	NaN	NaN	NaN
15	2017/10/31	cloudy	2	NaN	NaN	NaN
16	2017/11/1	sunny	1	NaN	NaN	NaN
17	2017/11/2	cloudy	2	NaN	NaN	NaN
18	2017/11/3	cloudy	2	NaN	NaN	NaN
19	2017/11/4	cloudy	2	NaN	NaN	NaN
20	2017/11/5	cloudy	2	NaN	NaN	NaN
21	2017/11/6	cloudy	2	NaN	NaN	NaN
22	2017/11/7	cloudy	2	NaN	NaN	NaN
23	2017/11/8	sunny	1	NaN	NaN	NaN
24	2017/11/9	cloudy	2	NaN	NaN	NaN
25	2017/11/10	cloudy	2	NaN	NaN	NaN
26	2017/11/11	cloudy	2	NaN	NaN	NaN
27	2017/11/12	cloudy	2	NaN	NaN	NaN
28	2017/11/13	rain	3	NaN	NaN	NaN
29	2017/11/14	rain	3	NaN	NaN	NaN
47	2017/12/2	cloudy	2	NaN	NaN	NaN
48	2017/12/3	cloudy	2	NaN	NaN	NaN
49	2017/12/4	cloudy	2	NaN	NaN	NaN
50	2017/12/5	sunny	1	NaN	NaN	NaN
51	2017/12/6	sunny	1	NaN	NaN	NaN
52	2017/12/7	cloudy	2	NaN	NaN	NaN
53	2017/12/8	cloudy	2	NaN	NaN	NaN
54	2017/12/9	cloudy	2	NaN	NaN	NaN
55	2017/12/10	sunny	1	NaN	NaN	NaN
56	2017/12/11	sunny	1	NaN	NaN	NaN
57	2017/12/12	cloudy	2	NaN	NaN	NaN
58	2017/12/13	cloudy	2	NaN	NaN	NaN
59	2017/12/14	cloudy	2	NaN	NaN	NaN
60	2017/12/15	rain	3	NaN	NaN	NaN
61	2017/12/16	sunny	1	NaN	NaN	NaN
62	2017/12/17	sunny	1	NaN	NaN	NaN
63	2017/12/18	sunny	1	NaN	NaN	NaN
64	2017/12/19	sunny	1	NaN	NaN	NaN
65	2017/12/20	sunny	1	NaN	NaN	NaN
66	2017/12/21	sunny	1	NaN	NaN	NaN
67	2017/12/22	sunny	1	NaN	NaN	NaN
68	2017/12/23	cloudy	2	NaN	NaN	NaN
69	2017/12/24	sunny	1	NaN	NaN	NaN
70	2017/12/25	cloudy	2	NaN	NaN	NaN
71	2017/12/26	sunny	1	NaN	NaN	NaN
72	2017/12/27	cloudy	2	NaN	NaN	NaN
73	2017/12/28	rain	3	NaN	NaN	NaN
74	2017/12/29	cloudy	2	NaN	NaN	NaN
75	2017/12/30	cloudy	2	NaN	NaN	NaN

[77 rows x 6 columns]

In [9]:

```
# There are totally }77\mathrm{ rows of data.
# Here, 76 of }77\mathrm{ rows are picked to train the model, with the last one remaining
as the test set.
state = sh_weather.loc[0:75,'degree']
state
```

Out[9]:

0	3
1	2
2	2
3	3
4	2
5	1
6	1
7	2
8	1
9	1
10	2

$11 \quad 1$
$12 \quad 2$
131
142
$15 \quad 2$
$16 \quad 1$
$17 \quad 2$
182
192
$20 \quad 2$
$21 \quad 2$
22 2
231
$24 \quad 2$
$25 \quad 2$
$26 \quad 2$
$27 \quad 2$
283
293
$46 \quad 2$
$47 \quad 2$
482
492
501
$51 \quad 1$
$52 \quad 2$
532
542
$55 \quad 1$
$\begin{array}{ll}56 & 1 \\ 57 & 2\end{array}$
$58 \quad 2$
$\begin{array}{ll}59 & 2 \\ 60 & 3\end{array}$
$\begin{array}{ll}60 & 3 \\ 61 & 1\end{array}$
621
$\begin{array}{ll}63 & 1 \\ 64 & 1\end{array}$
$65 \quad 1$
$66 \quad 1$
$67 \quad 1$
$68 \quad 2$
691
$70 \quad 2$
$71 \quad 1$
$72 \quad 2$
733
$75 \quad 2$
Name: degree, Length: 76, dtype: int64

In [10]:
\# Train and extract each data.
State=[]
for i in range(76):
State.append(state[i])
State

Out[10]:
[3,
2,
2 ,
3,
2 ,
1,
1,
2,
1,
1,
2 ,
1 ,
2,
1,
2 ,
2 ,
1,
2 ,
2 ,
2 ,
2 ,
2 ,
2 ,
1,
2 ,
2 ,
2 ,
2,
3,
3 ,
2 ,
3 ,
2 ,
2 ,
3 ,
2 ,
3 ,
2 ,
2 ,
2 ,
2 ,
1,
1 ,
3 ,
3,
2,
2,
2 ,
2 ,
2 ,
1,
1,
2 ,
2 ,
2 ,
1 ,
1,
2 ,
2,

2,
3,
1,
1,
1,
1,
1,
1,
1,
2 ,
1,
2,
1,
2,
3,
2,
$2]$

In [12]:

```
R=[[0,0,0],[0,0,0],[0,0,0]]
```

In [8]:

```
# Here we define two functions to calculate state transition matrix.
def Pijm(i,j,m):
    a=0
    for }\textrm{n}\mathrm{ in range(len(State)):
        if State[n]==i:
            try:
                    if State[n+m]==j:
                    a=a+1
                except:
                    pass
    return a/(State[0:len(State)-m].count(i))
def Rm(m):
    for i in range(1,4):
        for j in range(1,4):
            R[i-1][j-1]=Pijm(i,j,m)
    return R
```


Hypothesis test of independency

The Markov chain refers that the probability distribution of the next state can only be determined by the current state, and the events before it in the time series are irrelevant. This means changes of each state are independent from each other. Thereofre, hypothesis test of independence is necessary. Then, we have
H_{0} : The conditions of daily weather are independent.
The frequency of daily weather conditions

1	11	1
11	23	7
1	7	2

After the calculation, we have $\chi_{4}^{2}=6.495, p-v a l u e=0.165$. Hence, this is not evidence against H_{0}. We can get state transition matrices as below.

These Markov matrices, with $m=1$ and $m=2$, are the first and second order Markov tranision probability matrices, and they respectively predict tomorrow and the day after tomorrow's weather conditions, in which each rows from the top to the bottom mean sunny days, cloudy days and rainy days, with each columns representing the probability of next states of sunny days, cloudy days and rainy days.

In [10]:

```
m=1
R1=np.matrix(Rm(m))
R1
```

Out[10]:
matrix([[0.47826087, 0.47826087, 0.04347826],
[0.26829268, 0.56097561, 0.17073171],
[0.09090909, 0.72727273, 0.18181818]])

In [11]:

```
m=2
R2=np.matrix(Rm(m))
R2
```

Out[11]:
matrix([[0.43478261, 0.43478261, 0.13043478],
$[0.275$, 0.6 , 0.125],
[0.18181818, 0.63636364, 0.18181818]])

