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Second Order Optimization
Second order optimization is more accurate than first order optimization like gradient descent. The paper
represents second order optimization methods for non-linear equations using least squares.

What is a non-linear equation and a set of non-linear equation? 
Equations not having form  or  are considered as non-linear equations.
i.e.  is a non-liner equation. 
Consider a set of m equations in n variables  .

  
Here  equation  is also a  residual. And  is a vector of unknowns. 
Collectively , where  is a vector of residuals.

Here our goal is to find  which minimizes .
Optimality condition for any  being a solution is to satisfy .
Important: The optimality condition is necessary but not sufficient condition. Values satisfying the condition
may not be a solution.
Convexity 
Now, if the function is convex then it reduces computation to find the minimum value of the function.
Convexity prevents two local minima and hence if function is convex then it would have usually one
minimum value or set of minimum values lying on a line.
e.g.  
Mathematically, function  is convex if its Hessian matrix (second derivative matrix) is positive
semidefinite at all x.

Newton Algorithm
It is a powerful heuristic algorithm for the nonlinear least squares problem.For multi-variables, Newton’s
method for minimizing f(x) is defined as:

This iteration gives the Newton algorithm where  is the Hessian Matrix. 
SHORTCOMINGS
The basic Newton algorithm can diverge and the iterations terminate if the derivative matrix is not
invertible. So we use another algorithm called Levenberr-Marquardt Algorithm which can remove the
above drawbacks. 

levenberg-Marquardt Algorithm
This is another powerful heuristic algorithm and also the advanced Version of Newton Algorithm. Here we
have two objectives The first objective is an approximation of what we really want to minimize; the second
objective expresses the idea that we should not move so far that we cannot trust the affine approximation.

Here we are using a new parameter  trust parameter.
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Data Fitting 
As in linear model fitting, we choose the parameter θ (approximately) by minimizing the sum of the squares
of the prediction residuals
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