Markovian (and Deterministic) Dynamic System ${ }^{1}$

Xiaomeng Cai 45490826, Shibo Ma 45207547, Gaoyu Lu 45389630, Ruiling Chen 45737455, Yang Len 45759297

1 Introduction

Let us take the traffic light system as an example. Considered such a traffic light in practice, there are red, green and yellow. Three different colours run in a designed subsequence, red firstly, then green and yellow lastly. Then, this sequence can be seen as a state machine, each time of a colour appearing only depends on the last colour. Described in mathematics notation, $x_{1}=$ red, $x_{2}=$ green, $x_{3}=$ yellow, $x_{4}=$ red again, the state x_{i} is a deterministic pattern, with each state only determined by the last state.
Thus, we can deduce a linear dynamical system that is a simple model for a sequence x_{1}, x_{2}, \ldots in which each x_{t+1} is a linear function of x_{t} :

$$
x_{t+1}=A_{t} x_{t}, \quad t=1,2, \ldots
$$

The $n \times n$ matrices A_{t} are called the dynamics matrices. The equation above is called the dynamics or update equation.
This linear dynamical system is sometimes called a Markov model (after the mathematician Andrey Markov). Markov studied systems assumed that future states depend only on the current state, i.e. x_{t+1} depends only on x_{t}, and not additionally on x_{t-1}, x_{t-2}, \ldots

2 Method

2.1 Deterministic Patterns

The deterministic pattern is a system in which no randomness is involved in the development of future states of the system. A deterministic model will thus always produce the same output from a given starting condition or initial state.

2.2 Non-deterministic Patterns

Differentiated from deterministic patterns, non-deterministic systems will give different solution each time for the same input.

$2.3 \chi^{2}$ test

It is used to test independency of events and ensure accuracy of our model.

3 Tool

Editor: Jupyter Notebook; Programming: Python 3; Visualisation: Setosa.io ${ }^{2}$.

4. Application

Take 2017 Shanghai's winter weather records as the example. We modelled it with state 1,2 and 3 , representing sunny days, cloudy days and rainy days. The Final results are shown as below, a transition probability matrix visualisation.

[^0]
[^0]: ${ }^{1}$ The link of video: https://youtu.be/9WpuBwX-Q8Q
 ${ }^{2}$ http://setosa.io/\#/

