MATH7502 Group project: Signal Processing

1. Convolution

Convolution is a mathematical operation on two functions that produces a third function expressing how the shape of one is modified by the other.
Vector convolution: The convolution of an n-vector a and an m-vector b is the ($n+m-1$)-vector denoted $\mathrm{c}=\mathrm{a} * \mathrm{~b}$, with the entries,

$$
c_{k}=\sum_{i+j=k+1} a_{i} b_{j}, \quad k=1, \ldots, n+m-1
$$

Matrix convolution: The convolution of an $m \times n$ matrix A and a $p \times q$ matrix B is the $(m+p-1) \times$ $(\mathrm{n}+\mathrm{q}-1)$ matrix C , with the entries,

$$
C_{r s}=\sum_{i+k=r+1, j+l=s+1} A_{i j} B_{k l}, \quad r=1, \ldots, m+p-1, s=1, \ldots, n+q-1
$$

2. Fourier transform

Discrete Fourier Transform (DFT): Given a complex N -vector $f=\left(f_{0}, f_{1}, \ldots, f_{N-1}\right)$, DFT takes f in "x-space" to its coefficients in "frequency space",

$$
f=c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{N-1} b_{N-1}
$$

where b_{k} are N basis vectors with $\left(b_{k}\right)_{j}=e^{2 \pi i j k / N}=\left(e^{2 \pi i / N}\right)^{j k}$ and c_{k} are discrete Fourier coefficients.
Two $\mathrm{N} \times \mathrm{N}$ matrices, Fourier Matrix F and DFT Matrix Ω, are defined for actual calculation. F contains powers of $w=e^{2 \pi i / N}$ and Ω contains powers of $\omega=e^{-2 \pi i / N}=\bar{w}$.
DFT: Ω times f produces the discrete Fourier coefficients c .
Inverse - DFT: F times c bring back the vector f.
Fast Fourier Transform (FFT): To multiply F times c as quickly as possible, FFT is to connect F_{N} with the half-size Fourier matrix $F_{N / 2}$,

$$
F_{N}=\left[\begin{array}{cc}
I_{N / 2} & D_{N / 2} \\
I_{N / 2} & -D_{N / 2}
\end{array}\right]\left[\begin{array}{ll}
F_{N / 2} & \\
& F_{N / 2}
\end{array}\right]\left[\begin{array}{c}
\text { even }- \text { odd } \\
\text { permutatio }
\end{array}\right]
$$

Where I is the identity matrix, D is the diagonal matix. Keep on this step going to

3. Shift matrices and Circulant Matrices

Upward shift cyclic permutation: When $n \times n$ matrix P multiplies a $n n$-vector x, the components of x shift upward. P is a binary matrix with ones only on the superdiagonal and $P_{n, 1}$, and zeroes elsewhere.
Circulant matrix: Given an n vector $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$, its circulant matrix C is defined as,

$$
C=c_{0} P^{n}+c_{1} P^{1}+c_{2} P^{2}+\ldots+c_{n-1} P^{n-1}
$$

Cyclic convolution: Given two n-vectors c and d , respectively generate their circulant matrices C and D . First row of product of C and D is the cyclic convolution of c and d, denoted as $c \otimes d$.
Convolution Rule: $F(c \otimes d)=(F c) . *(F d)$
LHS: Cyclic convolve c and d first, then transform by F.
RHS: Transform c and d by F first, then multiply Fc times Fd component by component.

